Review: Slopes of Tangents and Normals

1. Find the equation of the tangent to the curve $y=\frac{1}{x}$ at the point where $x=2$.
2. Find all points on the curve $y=x^{3}$ which have a slope of 6 .
$m_{\tan }=\lim _{h \rightarrow 0} \frac{(a+h)^{3}-a^{3}}{h}$
$=\lim _{h \rightarrow 0} \frac{\left(a^{3}+3 a^{2} h+3 a h^{2}+h^{3}\right)-a^{3}}{h}$
$=\lim _{h \rightarrow 0} \frac{3 a^{2} h+3 a h^{2}+h^{3}}{h}=\frac{h\left(3 a^{2}+3 a h+h^{2}\right)}{K}$
$m_{\tan }=3 a^{2}$
$(\sqrt{2}, f(\sqrt{2}))=\left(\sqrt{2},(\sqrt{2})^{3}\right)$

$$
\begin{array}{ll}
6=3 a^{2} & a^{2}=2 \\
a= \pm \sqrt{2}
\end{array}
$$

$$
-\sqrt{2}, f(\sqrt{2})=\left(-\sqrt{2},(-\sqrt{2})^{3}\right)
$$

3. Find the equation of the normal to the curve $y=x^{2}$ at $x=-3$.

$$
\begin{aligned}
& \text { need a coordinate } \\
&(-3, f(-3))=(-3,9) \quad m_{\tan }=2 x \\
& m_{\tan }=-6 \\
& m_{\text {nom }}=\frac{1}{6} \\
& y-9=\frac{1}{6}(x+3)
\end{aligned}
$$

4. Determine the equations) of all tangents to the curve $y=x^{2}+1$ which pass through the point

$$
\begin{aligned}
& m_{\tan }=\lim _{h \rightarrow 0} \frac{\left[(a+h)^{2}+1\right]-\left[a^{2}+1\right]}{h}
\end{aligned} \begin{array}{rlrl}
\text { coordinates are at }\left(a, a^{2}+1\right) & a=5 \text { or }-1 \\
m_{\tan }=2 a & \frac{a^{2}+1--4}{a-2} & =2 a & f(5)=26 \quad f(-1)=2 \\
a^{2}+5 & =2 a^{2}-4 a & m-26=10(x-5) \\
0 & =a^{2}-4 a-5 & \text { and } \\
0 & =(a-5)(a+1) & y-2=-2(x+1)
\end{array}
$$

$$
\begin{aligned}
& \text { ord } 2, f(2) \quad x=\frac{-1}{4} \\
& m_{\tan }=\lim _{h \rightarrow 0} \frac{\frac{1}{a+h}-\frac{1}{a}}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{(a)-(a+h)}{(a+h)(a)}\right) \quad m \tan =\frac{-1}{(2)^{2}}=\frac{-1}{4} \\
& =\lim _{h \rightarrow 0} \frac{1}{x}\left(\frac{-k}{(a+h)(a)}\right)=\frac{-1}{a^{2}} \quad y-\frac{1}{2}=\frac{-1}{4}(x-2)
\end{aligned}
$$

Review: Slopes of Tangents and Normals

1. Find the equation of the tangent to the curve $y=\frac{1}{x}$ at the point where $x=2$.
2. Find all points on the curve $y=x^{3}$ which have a slope of 6 .
3. Find the equation of the normal to the curve $y=x^{2}$ at $x=-3$.
4. Determine the equation(s) of all tangents to the curve $y=x^{2}+1$ which pass through the point $(2,-4)$.
