Warmup 1.9

1. Find the slope of the tangent to the curve $y=x^{2}-5$ at

$$
\begin{aligned}
\text { a) } & x=3 \\
m_{\tan } & =\lim _{h \rightarrow 0} m_{\sec } \\
& =\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h} \\
& =\lim _{h \rightarrow 0} \frac{9+6 h+h^{2}-5-4}{h} \\
& =\lim _{h \rightarrow 0} \frac{6 h+h^{2}}{h} \\
& =\lim _{h \rightarrow 0} 6+h \\
m \tan & =6
\end{aligned}
$$

c) $x=0$

$$
m \tan =-6
$$

graph is
symmetrical about

$$
x=0
$$

$$
m_{\tan }=0
$$

at the
d) $x=a$

$$
\begin{aligned}
\text { mtan } & =\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[(a+h)^{2}-5\right]-\left[a^{2}-5\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[a^{2}+2 a h+h^{2}-5\right]-\left[a^{2}-5\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 a h+h^{2}}{h} \text { or } \frac{W(2 a+h}{h} \\
m \tan & =2 a
\end{aligned}
$$

2. Find the slope of the tangent to the curve $f(x)=\sqrt{x}$ at $x=9$

$$
\begin{aligned}
m_{\tan } & =\lim _{h \rightarrow 0} \frac{f(9+h)-f(9)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{9+h}-\sqrt{9}}{h} \cdot \frac{\sqrt{9+h}+\sqrt{9}}{\sqrt{9+h}+\sqrt{9}} \\
& =\lim _{h \rightarrow 0} \frac{9+h-9}{h(\sqrt{9+h}+\sqrt{9})} \\
& =\lim _{h \rightarrow 0} \frac{h}{h(\sqrt{9+h}+\sqrt{9})}=\frac{1}{6}
\end{aligned}
$$

