Tangents and Normals

1. For the function $y=x^{2}+2 x$, determine a) the slope of the curve at $x=1$

- determine the tangent.

$$
\begin{aligned}
m_{\tan } & =\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[h^{2}+2 h+1+2(h+1)\right]-[3]}{h} \\
& =\lim _{h \rightarrow 0} \frac{h^{2}+4 h}{h}=\frac{h(h+4)}{h}
\end{aligned}
$$

$$
m_{\tan }=4
$$

b) the instantaneous rate of change of the function at $x=1$

$$
\begin{equation*}
4 \tag{1,3}
\end{equation*}
$$

c) the equation of the tangent to the curve at $x=1$
use slope point form

$$
y-3=4(x-1)
$$

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

d) the slope of the normal to the curve at $x=1$ perpendicular slopes
are negative $\quad m_{\text {norm }}=-\frac{1}{4}$
reciprocals

$$
m_{\tan }=4
$$

*normal line is perpendicular to perpendicular to
the tangent line
e) the equation of the normal to the curve at $x=1$

$$
y-3=\frac{-1}{4}(x-1)
$$

2. Find the slope of the tangent to the curve $y=f(x)$ at $x=a$
$m_{\tan }=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$
$=\lim _{h \rightarrow 0} \frac{\left[(a+h)^{2}+2(a+h)\right]-\left[a^{2}+2 a\right]}{h}$
$=\lim _{h \rightarrow 0} \frac{\left(a^{2}+2 a h+h^{2}+2 / a+2 h\right)-\left(a^{2}+2 / a\right)}{h}$
$=\lim _{h \rightarrow 0} \frac{h(2 a+h+2)}{h} \quad m_{\tan }=2 a+2$
3. At what point is the tangent to the curve $y=x^{2}-3 x+2$ horizontal ?
when is man $=0$?
$m_{\tan }=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$
$=\lim _{h \rightarrow 0} \frac{\left[(a+h)^{2}-3(a+h)+2\right]-\left[a^{2}-3 a+2\right]}{h}$
$=\lim _{h \rightarrow 0} \frac{\left(a^{2}+2 a h+h^{2}-33 a-3 h+2\right)-\left(a^{2}-3 a+2\right)}{h} \quad h(2 a+h-3) \quad \begin{array}{r}\text { when does } \\ 2 a-3=0 \\ a=\frac{3}{2}\end{array}$
$=\lim _{h \rightarrow 0} \frac{h(2 a+h-3)}{h}$
$=\lim _{h \rightarrow 0} 2 a+h-3$

4. Find the equations of all tangents to the curve $y=\frac{1}{x+1}$ that have a slope of -1 .

$$
\begin{aligned}
f\left(\frac{3}{2}\right) & =\left(\frac{3}{2}\right)^{2}-3\left(\frac{3}{2}\right)+2 \\
& =\frac{9}{4}-\frac{9}{2}+2 \\
& =\frac{9}{4}-\frac{18}{4}+\frac{8}{4} \\
f\left(\frac{3}{2}\right) & =-\frac{1}{4}
\end{aligned}
$$

point at $=\left(\frac{3}{2},-\frac{1}{4}\right)$

$$
m_{\tan }=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

$$
m_{\tan }=\frac{-1}{(a+1)^{2}}=-1
$$

$$
\begin{array}{rlrl}
& =\lim _{h \rightarrow 0} \frac{\frac{1}{a+h+1}-\frac{1}{a+1}}{h} & \frac{(a+1)^{2}}{-1}=\frac{1}{-1} \\
& =\lim _{h \rightarrow 0}\left(\frac{1}{h}\right)\left(\frac{(\alpha+1)-(\alpha+h+1)}{(a+h+1)(a+1)}\right) & (a+1)^{2}=1 \\
& =\lim _{h \rightarrow 0}\left(\frac{1}{k}\right)\left(\frac{-k}{(a+h+1)(a+1)}\right) & a+1= \pm \sqrt{1} \\
m_{\tan } & =\frac{-1}{(a+1)^{2}} & a=0 \text { or }-2 \\
& f(0)=1 & f(-2)=-1 \\
& y-1=-1(x-0) & y+1=-1(x+2)
\end{array}
$$

5. Find the equations of all lines tangent to $y=x^{2}$ that pass through $(2,3)$

there are 2 tangent lines that pass through this point.

$$
\begin{aligned}
m_{\tan } & =\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[(a+h)^{2}\right]-\left[a^{2}\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(\alpha^{k}+2 a h+h^{2}\right)-\left(a^{2}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{k(2 a+h)}{K} \\
m_{\tan } & =2 a
\end{aligned}
$$

slope between $\left(a, a^{2}\right)$ and $(2,8)=m_{\tan }$

$$
\begin{array}{rlrl}
\frac{a^{2}-3}{a-2} & =2 a \\
a^{2}-3 & =2 a^{2}-4 a \\
0 & =a^{2}-4 a+3 \\
0 & =(a-3)(a-1) \\
a & =3 \text { or } 1 \\
f(3) & =9 & f(1) & =1 \\
m \tan & =2 a & m \tan & =2 a \\
m \tan & =6 & m \tan & =2 \\
y-9 & =6(x-3) & y-1 & =2(x-1)
\end{array}
$$

$$
\begin{array}{r}
\text { p88 \# 23-27 all } \\
29,31,33,35
\end{array}
$$

Test on Friday

