1.8 Slopes of secants and tangents

For each of the following, write an expression for the slope of the secant through the given point. Then determine the slope of the tangent at the given point.

1. | $y=x^{2}+5 x$ at $x=3$ |  |
| ---: | :--- |
| $m_{\text {sec }}$ | $=\frac{f(3+h)-f(3)}{h}$ |
|  | $=\frac{(3+h)^{2}+5(3+h)-24}{h}$ |
|  | $=\frac{9+6 h+h^{2}+15+5 h-24}{h \quad \text { msec }}=11+h$ |
2. $y=7 \quad$ at $x=-3 \quad \lim _{h \rightarrow 0}=11$
$m=0$
3. $y=-2 x+9$ at $x=5$

$$
m_{\text {sec }}=\frac{f(3+h)-f(3)}{h}
$$

$$
m_{\text {sec }}=\frac{f(5+h)-f(5)}{h}
$$

$$
=\frac{-10-2 h+9-(-1)}{h}
$$

$$
=\frac{-2 h}{h} \quad \text { at } x=5=-2
$$

4. $y=x^{3}$ at $x=4$

$$
\begin{aligned}
m_{\sec } & =\frac{(4+h)^{3}-4^{3}}{h} \\
& =\frac{64+48 h+12 h^{2}+h^{3}-64}{h} \\
& =\frac{48 h+12 h^{2}+h^{3}}{h} \\
m_{\text {sec }} & =48+12 h+h^{2} \quad \text { man }=48
\end{aligned}
$$

5. $y=\sqrt{2 x+3}$ at $x=1$

$$
\begin{aligned}
m_{\text {sec }} & =\frac{\sqrt{2(1+h)+3}-\sqrt{2(1)+3}}{h .} \\
& =\frac{\sqrt{5+2 h}-\sqrt{5}}{h} \cdot \frac{\sqrt{5+2 h}+\sqrt{5}}{\sqrt{5+2 h}+\sqrt{5}} \\
& =\frac{5+2 h-5}{h(\sqrt{5+2 h}+\sqrt{5}) \quad} \quad m_{\tan }=\frac{2}{2 \sqrt{5}} \circ-\frac{1}{\sqrt{5}} \\
& =\frac{2}{\sqrt{5+2 h}+\sqrt{5}} \quad
\end{aligned}
$$

6. $y=\frac{2}{x-3} \quad$ at $\quad x=4$

$$
\begin{aligned}
m_{\text {sec }} & =\frac{\frac{2}{4+h-3}-\frac{2}{4-3}}{h} \\
& =\frac{\frac{2}{1+h}-\frac{2}{1}}{h} \\
& =\frac{2-2(1+h)}{(1+h)(1)} \cdot \frac{1}{h}=\frac{-2 k}{k(1+h)}=\frac{-2}{1+h}
\end{aligned}
$$

$$
m_{\tan }=-2
$$

7. $y=x^{2}+9$ at $x=a$

$$
\begin{aligned}
m_{\text {sec }} & =\frac{(a+h)^{2}+9-\left(a^{2}+a\right)}{h} \\
& =\frac{a^{2}+2 a h+h^{2}+9-a^{2}-9}{h} \\
& =\frac{2 a h+h^{2}}{h}=\frac{h(2 a+h)}{h} \\
m_{\text {sec }} & =2 a+h \quad m \tan =2 a
\end{aligned}
$$

8. $y=f(x)$ at $x=a$

$$
\begin{aligned}
& m_{\text {sec }}=\frac{f(a+h)-f(a)}{h} \\
& m_{\tan }=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
\end{aligned}
$$

