Continuity
Definition: A function is continuous at an interior point c of an interval $[a, b]$, if and only if, $\lim _{x \rightarrow c} f(x)=f(c)$

Note: This definition defines continuity at an interior point of an interval.
In order for a function to be continuous at a, the limit must exist and the function has to be defined at a

This definition can be extended to define continuity at the left endpoint, a, of an interval: $\lim _{x \rightarrow a^{+}} f(x)=f(a) \quad$ or for the right endpoint, $b,:$

$$
\lim _{x \rightarrow b^{-}} f(x)=f(b)
$$

a point can still be continuous if there is only a left or right hand limit

Point	Continuous ?	Reason	Type of Discontinuity
a	yes	$\lim _{x \rightarrow a^{+}} f(x)=f(a)$	
b	yes	$\lim _{x \rightarrow b} f(x)=f(b)$	
c	no	limit does not exist	jump discontinuity
d	no	$f(x)$ does not exist for $x=d$	removable discontinuity
e	no	$\lim _{x \rightarrow e^{-}} f(x)=-\infty, \lim _{x \rightarrow e^{+}} f(x)=\infty \quad f(e)$ does no tex st	infinite
f	no	$\lim _{x \rightarrow f} f(x) \neq f(f)$	removable
g	no	$\lim _{x \rightarrow g} f(x) \neq f(g) \quad f(g)$ does not	removable.

Another type of discontinuity is an oscillating discontinuity, illustrated by the function $y=\sin \left(\frac{1}{x}\right) \quad$ as $x \rightarrow 0$

A function is said to be continuous on an interval if it is continuous at each point in the interval. A function is continuous if it is continuous at each point in its domain. Thus $y=\sqrt{x}$ and $y=\frac{1}{x}$ are both examples of continuous functions.

The Intermediate Value Theorem for Continuous Functions
If $f(x)$ is a continuous function on the interval $[a, b]$, then $f(x)$ takes on every value between $f(a)$ and $f(b)$

Examples

1. Is any real number exactly 2 more than its cube? Explain.

$$
\left.\begin{array}{l}
\text { let the number }=x \quad \begin{array}{l}
x^{3}+2=x \\
x^{3}-x+2=0
\end{array} \\
f(-2)=-4 \\
f(0)=2
\end{array}\right\} \begin{aligned}
& \text { is there a solution } \\
& \text { a solution whomial function } \\
& \text { is always continuous. } \\
& f(x)=0 \text { it occurs where }-2<x<0
\end{aligned}
$$

2. For the following function, determine any points of discontinuity and describe the type of discontinuity.

3. Give a formula for the extended function that is continuous at the indicated point.
$y=\frac{x-4}{\sqrt{x}-2} \cdot \frac{\sqrt{x}+2}{\sqrt{x}+2}$ at $x=4$

$$
\begin{aligned}
k(2)^{2}-1 & =-3(2)+7 \\
4 k-1 & =1 \\
4 k & =2 \\
k & =\frac{1}{2}
\end{aligned}
$$

continuous if the left price joins up with right piece.
p180 \#1-9 odd
\# 11-18 all
\# 19.29 odd
\# $35-38,41,42,45$

