1.5 Warmup

Determine the following limits:

$$
y=e^{-x}
$$

1) $\lim _{x \rightarrow \infty} \frac{e^{-x}}{x}=0$

2) $\lim _{x \rightarrow-\infty} \frac{e^{-x}}{x}=-\infty$ $y=x$

3) $\lim _{x \rightarrow 2} \frac{\sqrt{x+7}-1}{x-2}=\frac{2}{0}$
\therefore asymptote
4) $\begin{aligned} \lim _{x \rightarrow \infty} \frac{\sin x}{x} & =\text { numerator that is }-1 \\ & =0 \text { because your }\end{aligned}$ fraction is infinitely small, doss int mater if
5) $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=e$
6) $\lim _{x \rightarrow \infty} \tan x$

- no limit $\sin x$ is $(f$ or θ

as graph gets to ∞
the value of $\tan x$ does not approach a single value

7) For the function $y=f(x)$, you are told that $\lim _{x \rightarrow a^{+}} f(x)=-\infty$. What does this tell you about the function? there is an asymptote at $x=a$
8) For the previous question, what is $\lim _{x \rightarrow a^{-}} f(x)$? no it could be anything. ex. it could be part of a piecewise function

Limits of Trigonometric Functions

What is $\lim _{x \rightarrow 0} \frac{\sin x}{x}$?

Numerical Approach

Approaching x from the right
x
0.2
0.1
0.01
0.001
.99335
.99833
.9998
1

The table suggests that $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$

Graphical Approach

Graphing $y=\frac{\sin x}{x}$ yields the graph:

The graph seems to suggest that:

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{-}} \frac{\sin x}{x}=1 \\
& \lim _{x \rightarrow 0^{+}} \frac{\sin x}{x}=1
\end{aligned}
$$

Approaching x from the left
x

$$
\frac{\sin x}{x}
$$

$$
-0.2
$$

$$
-0.1
$$

$$
-0.01
$$

$$
-0.001
$$

Thus the graph seems to suggest that $\lim _{x \rightarrow 0} \frac{\sin x}{x}=$ \qquad
To prove this geometrically requires the use of the Sandwich Theorem (Yummy, Yummy - also known as the Squeeze Theorem)

$$
\text { If } g(x) \leq f(x) \leq h(x) \text { and } \lim _{x \rightarrow a} g(x)=\lim _{x \rightarrow a} h(x)=L \text {, then } \lim _{x \rightarrow a} f(x)=L
$$

$$
\left.\left.\begin{array}{rl}
\text { A of } \triangle O P B & \leq \text { pie } P O A
\end{array} \leq \text { A of } \triangle \operatorname{coA} \text { a } \frac{x}{2 \pi} \leq \frac{1 \cdot \tan x}{2}\right] 2\right] ~\left[\begin{array}{rl}
{\left[\frac{\cos x \cdot \sin x}{2}\right.} & \left.\leq \pi \cdot \frac{\sin x}{\cos x}\right] \frac{1}{\sin x} \\
\cos x & \leq \frac{x}{\sin x} \leq \frac{1}{\cos x} \\
\frac{1}{\cos x \sin x} \geq \frac{\sin x}{x} \geq \cos x \\
1 & \geq \frac{\sin x}{x} \geq 1
\end{array}\right.
$$

$$
\text { as } x \rightarrow 0
$$

Thus
provided x is measured in radians

Evaluate:

$$
\text { 8) } \begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin x}{3 x} & =\lim _{x \rightarrow 0} \frac{\sin x}{x} \cdot \frac{1}{3} \\
& =(1)\left(\frac{1}{3}\right) \\
& =\frac{1}{3}
\end{aligned}
$$

2)

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin (5 x)}{x} & =\lim _{x \rightarrow 0} \frac{\sin (5 x)}{x} \cdot \frac{5}{5} \\
& =\lim _{x \rightarrow 0} \frac{\sin (5 x)}{5 x} \cdot \frac{5}{1} \\
& =\text { (1)(5) } \\
& =5
\end{aligned}
$$

3) $\lim _{x \rightarrow 0} \frac{\sin 3 x}{\sin 5 x}=\lim _{x \rightarrow 0} \frac{\sin 3 x}{1} \cdot \frac{1}{\sin 5 x}$ 4) $\lim _{x \rightarrow 0} \frac{\sin x}{x^{2}+5 x}=\lim _{x \rightarrow 0} \frac{\sin x}{x(x+5)}$

$$
=(1)(3)(1) \cdot\left(\frac{1}{5}\right)
$$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{\sin x}{x} \cdot \frac{1}{x+5} \\
& =\frac{1}{5}\left(\frac{1}{5}\right) \\
& =\frac{1}{5}
\end{aligned}
$$

$$
=\frac{3}{5}
$$

6) $\quad \lim _{x \rightarrow 0} \frac{\sin ^{3} x}{x^{2}}=\lim _{x \rightarrow 0} \frac{\sin x}{x} \cdot \frac{\sin x \cdot \sin x}{x}$

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sin x \cdot \cos x}{x(x-7)} \\
& \lim _{x \rightarrow 0} \frac{\sin x}{x} \cdot \frac{\cos x}{x-7} \\
& =\quad(1) \cdot \frac{1}{-7} \\
& =\quad-\frac{1}{7}
\end{aligned}
$$

7) $\lim _{x \rightarrow 0} \frac{1-\cos ^{2} x}{x}$
8) $\lim _{x \rightarrow 0} \frac{\cos x-1}{x}=\lim _{x \rightarrow 0} \frac{-(1-\cos x)(1+\cos x)}{x}(1+\cos x)$

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x} \\
& \lim _{x \rightarrow 0} \frac{\sin x}{x}-\sin x \\
= & (1)(0)=0
\end{aligned}
$$

$$
=\lim _{x \rightarrow 0} \frac{-\left(1-\cos ^{2} x\right)}{x(1+\cos x)}
$$

$$
=\lim _{x \rightarrow 0} \frac{-\sin ^{2} x}{x(1+\cos x)}
$$

9) $\lim _{x \rightarrow \pi} \frac{\sin (x-\pi)}{x-\pi}=1$

$$
=-\frac{\sin x}{x} \cdot \frac{\sin x}{1+\cos x}
$$

$$
\begin{array}{ll}
x \rightarrow \pi \\
x-\pi \rightarrow 0 & \lim _{a \rightarrow 0} \frac{\sin (a)}{a}=1
\end{array}
$$

$$
\text { let } a=x-\pi
$$

