Warmup 1.3
Determine the following limits

Limits Involving Infinity
Vertical asymptotes: Limits Equaling Infinity at finite values
If $\lim _{x \rightarrow a^{+}} f(x)= \pm \infty$ or $\lim _{x \rightarrow a^{-}} f(x)= \pm \infty$ then the graph appears as an asymptote.

For a rational function of the form $f(x)=\frac{g(x)}{h(x)}, \quad x=a$ is a vertical asymptote if

$$
\begin{aligned}
& g(x) \neq 0 \\
& \text { and } h(x)=0
\end{aligned}
$$

If both $g(a)$ and $h(a)$ equal zero, then there is either a hole in the graph or a break.

Find any vertical asymptotes. Describe the behavior to the left and right of any asymptotes.

1) $f(x)=\frac{1}{x^{2}}$

$$
x \neq 0
$$

try $x=.1$

$$
x=-.1 \quad f(-.1)=+
$$

3) $f(x)=\frac{x+2}{x^{2}-4}$

$$
\begin{aligned}
& f(.1)=+ \\
& \therefore \lim _{x \rightarrow 0^{+}}=+\infty \\
& f(-.1)=+ \\
& \therefore \lim _{x \rightarrow 0^{-}}=-\infty
\end{aligned}
$$

2) $f(x)=\frac{1}{x^{2}-4}$
$x \neq 2$

$$
\begin{aligned}
& f(2.1)=+ \\
& \therefore \lim _{x \rightarrow 2^{+}} f(x)=+\infty \\
& f(1.9)=- \\
& \therefore \lim _{x \rightarrow 2^{-}} f(x)=-\infty
\end{aligned}
$$

4) $f(x)=\frac{x^{2}-4}{x+2}=\frac{(x+2)(x-2)}{(x+2)}=x-2$.
\therefore hole at $x=-2$.
since denom $\neq 0$ then no asymptotes

$$
\begin{aligned}
& f(2.1)=+ \\
& \therefore \lim _{x \rightarrow 2^{+}} f(x)=+\infty
\end{aligned}
$$

$$
f(1.9)=-
$$

$$
\therefore \lim _{x \rightarrow 2^{-}} f(x)=-\infty
$$

5) $f(x)=\frac{x^{2}-5 x-6}{x^{2}-8 x+12}=\frac{(x-6)(x+1)}{(x-6)(x+2)}$
6) $f(x)=\tan x$
$f(x)$ has a hole at $x=6$
by graphing asymptote at $x=-2$

$$
\begin{array}{ll}
f(-1.9)=- & f(-2.1)=+ \\
\therefore \lim _{x \rightarrow-2^{+}} f(x)=-\infty & \therefore \lim _{x \rightarrow-2^{-}} f(x)=+\infty
\end{array}
$$

aerify by graphing
\lim

$$
x \rightarrow \frac{\pi^{-}}{2} f(x)=+\infty
$$

note: can also put in any $x=\frac{\pi}{2}+n \pi$

Finite limits as $x \rightarrow \pm \infty$ (Limits at the extreme left and right of the function)
(what we call "end behaviour"

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{k}{x^{n}}=0 \leftarrow \text { denominator becomes " } \\
& \lim _{x \rightarrow-\infty} \frac{k}{x^{n}}=0
\end{aligned} \quad \text { mfinitely large }
$$

Horizontal asymptotes - Limits at infinity
If $\lim _{x \rightarrow \infty} f(x)=b$ or $\lim _{x \rightarrow-\infty} f(x)=b$ then there is a horizontal asymptote at

Note: The maximum number of horizontal asymptotes that a function can have is \qquad necessarily on the other side. A horizontal asymptote can be intersected by the function an infinite number of times.
the left and right side may have different horizontal asymptotes

Determine any horizontal asymptotes. To do this, it means that you have to examine the behavior of the
function at both positive and negative infinity.

$$
\begin{aligned}
& \text { as } x \rightarrow \pm \infty \\
& x^{3} \text { and } 4 x^{3} \text { are } \\
& \text { important } \\
& \lim _{x \rightarrow+\infty} f(x)=\frac{5 x^{2}}{13 x^{2}} \text { and } \lim _{x \rightarrow-\infty} f(x)=\frac{5}{13} \\
& =\frac{5}{13} \\
& \lim _{x \rightarrow+\infty} f(x)=\frac{x^{3}}{4 x^{3}}=\frac{1}{4} \\
& \lim _{x \rightarrow-\infty}=\frac{1}{4}
\end{aligned}
$$

3) $f(x)=\frac{2 x^{4}+5 x}{4 x^{3}-1}$

$$
\begin{aligned}
\lim _{x \rightarrow+\infty} f(x)=\frac{2 x^{4}}{4 x^{3}} & =\frac{1}{2} x \\
& =+\infty
\end{aligned}
$$

$$
\lim _{x \rightarrow-\infty} f(x)=-\infty
$$

5) $f(x)=\frac{\cos x}{x}$
as $x \rightarrow+\infty \quad \cos x$ oscillates between 0 and 1 but $x \rightarrow \infty$
as $x \rightarrow-\infty \quad \cos x$ still oscillates, but $x \rightarrow-\infty$

$$
\lim _{x \rightarrow \pm \infty} f(x)=\frac{\text { something }}{ \pm \infty}=0
$$

7) $f(x)=\frac{5 \sin x}{x^{2}+8 x}$

$$
\begin{aligned}
& \lim _{x \rightarrow+\infty} f(x)=0 \\
& \lim _{x \rightarrow-\infty} f(x)=0
\end{aligned}
$$

same reason
as \#5
4) $f(x)=\sin x$
no limit: as $x \rightarrow \infty$ or $-\infty$ it continues to oscillate between 1 and -1

It is sometimes helpful when exploring limits at infinity to use an end behavior model. An end behavior model is a simple, basic function which closely approximates the actual function at either infinity or negative infinity.

For the function f :
The function g is a right end behavior model if $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=1$
The function g is a left end behavior model if $\lim _{x \rightarrow-\infty} \frac{f(x)}{g(x)}=1$

$$
y=-1 \quad \text { because } x=\Theta \quad y=+1 \text { because } x=\Theta
$$

Determine all asymptotes for the function $f(x)=\frac{4 x}{\sqrt{x^{2}-4}}$
end behaviour

$$
x^{2}-4=0
$$

$$
x= \pm 2
$$

vertical
asymptotes at

$$
\begin{array}{ll}
x=2, & -2 \\
y=1 & (\text { right }) \\
y=-1 & (\text { left })
\end{array}
$$

"Seeing" limits at infinity - To explore limits at infinity on a graphics calculator, the question is how far do you have to go to see what is happening at infinity. One way to explore this graphically is to examine the graph of $y=f\left(\frac{1}{x}\right)$ and examine the behavior of this transformed function around zero.

This means $\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow 0^{+}} f\left(\frac{1}{x}\right)$ and $\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow 0^{-}} f\left(\frac{1}{x}\right)$

