Definition of the Limit of a Function

Calculus 12

Unit 1.2
If $\quad f(x)=x^{2}-x+3$, what happens to the values of $f(x)$ as x gets closer to 2 ?

Graphical Analysis

Numerical Analysis

x	$f(x)$	x	$f(x)$
1.0	3	3.0	9
1.5	3.75	2.5	6.75
1.9	4.71	2.1	5.31
1.99	4.97	2.01	5.03
1.999	4.997	2.001	5.003

It appears that the values of $f(x)$ get closer and closer to 5 as x gets closer to 2 . This is an example of the idea of a limit and is denoted as $\lim _{x \rightarrow 2} f(x)=5$. (This is read as "the limit of $f(x)$ as x approaches 2.")

Thus $\lim _{x \rightarrow a} f(x)$ means to describe what happens to the values of $f(x)$ as x gets closer and closer to a.

Definition

$$
\lim _{x \rightarrow a} f(x)=L
$$

The limit of $f(x)$, as x approaches a, equals L, if we can make the values of $f(x)$ arbitrarily close to L (as close as we like) by taking x sufficiently close to a but not equal to a.

Precise Definition of the Limit

The function f has limit L as x approaches a, if for any given ε, there is a positive number δ such that for all x

$$
0<|x-a|<\delta \Rightarrow|f(x)-L|<\varepsilon
$$

One and Two sided limits

Consider the function $f(x)=\frac{1}{2} x^{3}$

What happens to the values of $f(x)$ as you approach 2 from the left hand side?
$\lim _{x \rightarrow 2^{-}} f(x)=4$
"left hand limit"

What happens to the values of $f(x)$ as you approach 2 from the right hand side?

$$
\lim _{x \rightarrow 2^{+}} f(x)=4 \quad \text { "right hand limit" }
$$

Thus $\lim _{x \rightarrow 2} f(x)=4$
this limititonly exists if left hand
Use the graph of $y=f(x)$ below to determine each of the limits: and right hand limits are

$\lim _{x \rightarrow a} f(x)=L \quad \Leftrightarrow \quad \lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=L$

What is the relationship between $f(a)$ and $\lim _{x \rightarrow a} f(x)$?

$$
\lim _{x \rightarrow a} \text { and } f(a) \text { are }
$$

$\lim _{x \rightarrow a}$ and $f(a) \quad \lim _{x \rightarrow a}$ exists, but

limit suggests what $f(a)$ might be, but it might
Properties of Limits not be correct.

If $\lim _{x \rightarrow c} f(x)=L \quad$ and $\quad \lim _{x \rightarrow c} g(x)=M$, then

1) $\quad \lim _{x \rightarrow c}(f(x)+g(x))=\lim _{x \rightarrow c} f(x)+\lim _{x \rightarrow c} g(x)=L+M$

The limit of the sum of two functions is the sum of their limits.
2) $\lim _{x \rightarrow c}(f(x) \cdot g(x))=\lim _{x \rightarrow c} f(x) \cdot \lim _{x \rightarrow c} g(x)=L \cdot M$

The limit of a product of two functions is the product of their limits.
3) $\quad \lim _{x \rightarrow c} k \cdot f(x)=k \cdot L$

$$
\text { eg } \lim _{x \rightarrow 2} 3 x^{2}=3 \cdot \lim _{x \rightarrow 2} x^{2}
$$

The limit of a constant times a function is the constant times the limit of the function.
4) $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{L}{M}$

The limit of the quotient of two function is the quotient of their limits.
5) $\quad \lim _{x \rightarrow c}(f(x))^{\frac{r}{t}}=\quad[L]^{\frac{r}{t}}$

The limit of a rational power of a function is that power of the limit of the function.

Determine the following limits:

| 1. $\lim _{x \rightarrow 5} 3$ | 3 | 2. $\lim _{x \rightarrow c} 3$ | 3 | 3. $\lim _{x \rightarrow c} k$ | k |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 4. $\lim _{x \rightarrow 3} x$ | 3 | 5. $\lim _{x \rightarrow-5} x$ | -5 | 6. $\lim _{x \rightarrow a} x$ | a |

Using the properties of limits, we can see that

$$
\begin{aligned}
\lim _{x \rightarrow 3} 5 x^{2}-7 x+4 & =\lim _{x \rightarrow 3} 5 x^{2}-\lim _{x \rightarrow 3} 7 x+\lim _{x \rightarrow 3} 4 \\
& =5 \lim _{x \rightarrow 3} x^{2}-7 \lim _{x \rightarrow 3} x+\lim _{x \rightarrow 3} 4 \\
& =5\left(\lim _{x \rightarrow 3} x\right)^{2}-7 \lim _{x \rightarrow 3} x+\lim _{x \rightarrow 3} 4
\end{aligned}
$$

Two further properties of limits:
6) If $f(x)$ is a polynomial function, then $\lim _{x \rightarrow c} f(x)=f(c)$

The limit of a polynomial function can be found by direct substitution.
7) If $f(x)$ and $g(x)$ are polynomial functions, then $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{f(C)}{g(C)}$

The limit of a rational function can be found by direct substitution provided the denominator doesn't equal zero.

Determine the following limits:

$$
\text { 1) } \begin{aligned}
& \lim _{x \rightarrow 3} 2 x+5 \\
& = \\
& =2(3)+5 \\
& =11
\end{aligned}
$$

2) $\lim _{x \rightarrow 5} \sqrt{4 x^{2}+x}$

$$
\begin{aligned}
& =\sqrt{4(5)^{2}+5} \\
& =\sqrt{105}
\end{aligned}
$$

3) $\lim _{x \rightarrow 2} \frac{x+2}{x^{2}+3 x+1}$

$$
\begin{aligned}
& =\frac{2+2}{4+6+1}=\cos (0) \\
& =\frac{4}{11}
\end{aligned}
$$

How do you evaluate limits when you can't use direct substitution?
Strategy - Factor and cancel common factors.
5) $\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-4}$

$$
=\lim _{x \rightarrow 2} \frac{x-2}{(x+2)(x-2)}
$$

$$
=\frac{1}{(2)+2}
$$

$$
=\frac{1}{4}
$$

$$
\text { 6) } \begin{aligned}
& \lim _{x \rightarrow-4} \frac{x+4}{x^{2}+6 x+8} \\
= & \lim _{x \rightarrow-4} \frac{x+4}{(x+2)(x+4)} \\
= & \frac{1}{-4+2} \\
= & -\frac{1}{2}
\end{aligned}
$$

Factoring note: Sums and differences of cubes can be factored according to the following:

$$
x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right) \quad x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)
$$

Note that these are both the product of a binomial and a trinomial.
Thus

$$
\begin{aligned}
& x^{3}-27=(x-3)\left(x^{2}+3 x+9\right) \\
& 27 x^{3}+8 y^{3}=(3 x+2 y)\left(9 x^{2}-6 x y+4 y^{2}\right)
\end{aligned}
$$

7) $\lim _{x \rightarrow-3} \frac{x+3}{2 x^{3}+54}$

$$
\lim _{x \rightarrow-3} \frac{x+3}{2\left(x^{3}+27\right)}
$$

$$
\begin{aligned}
\lim _{x \rightarrow-3} & \frac{x+3}{2(x+3)\left(x^{2}-3 x+9\right)} \\
& =\frac{1}{2(9+9+9)} \\
& =\frac{1}{54}
\end{aligned}
$$

8) $\lim _{x \rightarrow 4} \frac{\frac{1}{x}-\frac{1}{4}}{3 x-12}=\frac{\frac{4}{4 x}-\frac{x}{4 x}}{3(x-4)}$

$$
\begin{aligned}
& =\frac{\frac{4-x}{4 x}}{3(x-4)} \\
& =\frac{-1(x-4)}{4 x} \cdot \frac{1}{3(x-4)} \\
& =\frac{-1}{48}
\end{aligned}
$$

Strategy - If limit involves square roots, multiply by the conjugate.
9) $\lim _{x \rightarrow 9} \frac{x-9}{\sqrt{x}-3} \cdot \frac{\sqrt{x}+3}{\sqrt{x}+3}$

$$
\begin{aligned}
& \lim _{x \rightarrow 9} \frac{(x-9)(\sqrt{x}+3)}{x-9} \\
& =\sqrt{9}+3 \\
& =6
\end{aligned}
$$

$$
(a-b)(a+b)=a^{2}-b^{2}
$$

11) $\lim _{x \rightarrow 3} \frac{\sqrt{x+6}-x}{3-x} \frac{\sqrt{x+6}+x}{\sqrt{x+6}+x}$

$$
\lim _{x \rightarrow 3} \frac{x+6-x^{2}}{(3-x)(\sqrt{x+6}+x)}
$$

$$
\lim _{x \rightarrow 3} \frac{(-1)\left(x^{2}-x-6\right)}{(-1)(x-3)(\sqrt{x+6}+x)}
$$

$$
\lim _{x \rightarrow 3} \frac{(x-\beta)(x+2)}{(x-3)(\sqrt{x+6}+x)}
$$

$$
=\frac{5}{\sqrt{9}+3}=\frac{5}{6}
$$

10) $\lim _{x \rightarrow 1} \frac{4-\sqrt{x}}{16-x} \cdot \frac{4+\sqrt{x}}{4+\sqrt{x}}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 16} \frac{16-x}{(16-x)(4+\sqrt{x})} \\
& =\frac{1}{4+\sqrt{16}} \\
& =\frac{1}{8}
\end{aligned}
$$

12) $\lim _{x \rightarrow 6} \frac{6-x}{\sqrt{2 x+4}-4} \cdot \frac{\sqrt{2 x+4}+4}{\sqrt{2 x+4}+4}$

$$
\begin{aligned}
& \lim _{x \rightarrow 6} \frac{-(x-6)(\sqrt{2 x+4}+4)}{2 x+4-16} \\
& \lim _{x \rightarrow 6} \frac{-(x-6)(\sqrt{2 x+4}+4)}{2 x-12} \\
& \lim _{x \rightarrow 6} \frac{-(x-6)(\sqrt{2 x+4}+4)}{2(x-6)} \\
& \frac{-(4+4)}{2} \\
& =-4
\end{aligned}
$$

Strategy - Graph the function and use the graph to help analyze the function or use a numerical approach.
9) $\lim _{x \rightarrow 0} \frac{x}{|x|} \frac{f(x)}{|f(x)|}$
10) $\lim _{x \rightarrow-5} \frac{x+5}{|x+5|} \quad \frac{f(x)}{|f(x)|}$

$\left.\begin{array}{l}f(.1)=1 \\ f(-.1)=-1\end{array}\right\} \begin{aligned} & \text { if the imit exists, } \\ & \text { these should be very } \\ & \text { close together. }\end{aligned}$
that they are not close indicates that there is no limit
11) Given the function $f(x)=\left\{\begin{array}{ll}-x & x<0 \\ 3 & x=0 \\ x^{2} & x>0\end{array}\right.$, determine the following

$$
\begin{aligned}
\lim _{x \rightarrow-4} f(x) & =-x \\
& =-(-4) \\
& =4
\end{aligned}
$$

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} f(x) & =0 \\
& =(x)^{2} \\
& =(0)^{2} \\
\lim _{x \rightarrow 3} f(x) & =x^{2} \\
& =(3)^{2} \\
& =9
\end{aligned}
$$

HL P62 \# $1-25,31-43$ odds.

