Definition of the Limit of a Function

Calculus 12
Unit 1.2

If f(x)=x*- x + 3, what happens to the values of f(x) as x gets closer to 2?
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It appears that the values of f (x) get closer and closer to 5 as x gets closer to 2. This is an
example of the idea of a limit and is denoted as lim f (x) = S . (Thisis read as “the limit of f (x)

as X approaches 2.”)

Thus lim f (x) means to describe what happens to the values of f (x) as x gets closer and closer to a.
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Definition lim f(x) = L

X—a

The limit of f(x), as x approaches a, equals L, if we can make the values of f (x) arbitrarily
close to L (as close as we like) by taking x sufficiently close to a but not equal to a.

Precise Definition of the Limit

The function f has limit L as x approaches a, if for any given ¢, there is a positive number &
such that for all x
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One and Two sided limits

Consider the function f (x)=1x
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The limit of a rational power of a function is that power of the limit of the function.



Determine the following limits:
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Using the properties of limits, we can see that
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Two further properties of limits:

6) If f(x)isa polynomial function, then lim f (x) = 'F(C,)
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The limit of a polynomial function can be found by direct substitution.
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The limit of a rational function can be found by direct substitution provided the denominator

doesn’t equal zero.

Determine the following limits:
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How do you evaluate limits when you can’t use direct substitution?
Strategy — Factor and cancel common factors.
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Factoring note: Sums and differences of cubes can be factored according to the following:

u

3 3

X —y* =(x=y)(X* +xy+y?) X4y =(x+y)(X —xy+Y?)
Note that these are both the product of a binomial and a trinomial.
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Strategy — If limit involves square roots, multiply by the conjugate.
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Strategy — Graph the function and use the graph to help analyze the function or use a numerical
approach.
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