Definition of the Limit of a Function

Calculus 12 Unit 1.2

If $f(x) = x^2 - x + 3$, what happens to the values of f(x) as x gets closer to 2?

Graphical Analysis

Numerical Analysis

х	f(x)	х	f(x)
1.0	3	3.0	9
1.5	3.75	2.5	6.75
1.9	4.71	2.1	5.31
1.99	4.97	2.01	5.03
1.999	4.997	2.001	5.063

It appears that the values of f(x) get closer and closer to $\underline{5}$ as x gets closer to 2. This is an example of the idea of a limit and is denoted as $\lim_{x\to 2} f(x) = \underline{5}$. (This is read as "the limit of f(x) as x approaches 2.")

Thus $\lim_{x\to a} f(x)$ means to describe what happens to the values of f(x) as x gets closer and closer to a.

$$\lim_{x \to a} f(x) = L$$

The limit of f(x), as x approaches a, equals L, if we can make the values of f(x) arbitrarily close to L (as close as we like) by taking x sufficiently close to a but **not** equal to a.

Precise Definition of the Limit

The function f has limit L as x approaches a, if for any given ε , there is a positive number δ such that for all x

$$0 < |x - a| < \delta \implies |f(x) - L| < \varepsilon$$

One and Two sided limits

Consider the function $f(x) = \frac{1}{2}x^3$

What happens to the values of f(x) as you approach 2 from the left hand side?

$$\lim_{x\to 2^{-}} f(x) = 4$$
 "left hand limit"

What happens to the values of f(x) as you approach 2 from the right hand side?

$$\lim_{x\to 2^+} f(x) = 4$$
 "right hand Irmit"

Thus
$$\lim_{x\to 2} f(x) = \Box$$

Thus $\lim_{x\to 2} f(x) = 4$ this limit only exists if left hand

Use the graph of y = f(x) below to determine each of the limits: and right hand limits are equal.

		•
$\lim_{x \to -2^{-}} f(x)$	$\lim_{x \to -2^+} f(x)$	$\lim_{x \to -2} f(x)$
2	ك	2
$\lim_{x \to -1^-} f(x)$	$\lim_{x \to -1^+} f(x)$	$\lim_{x\to -1} f(x)$ even though
\	1	1 f(-1) = 2
$\lim_{x\to 1^-} f\left(x\right)$	$\lim_{x\to 1^+} f\left(x\right)$	$\lim_{x\to 1}f\left(x\right)$
3	2	no limit exists,
$\lim_{x\to 3^{-}}f\left(x\right)$	$\lim_{x\to 3^+} f(x)$	$\lim_{x \to 3} f(x)$
2	2	$\lim_{x \to 3} f(x)$ even though $f(3) = \text{n.p.}$
$\lim_{x \to 4^{-}} f(x)$	$\lim_{x \to 4^+} f(x)$	$\lim_{x\to 4} f(x)$
\	1	1 and f(4)=1

$$\lim_{x \to a} f(x) = L \qquad \Leftrightarrow \qquad \lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = L$$

What is the relationship between f(a) and $\lim f(x)$?

$$y = f(x)$$

$$f(a) = \lim_{x \to a} f(x) = L$$

 $\lim_{x \to a} f(x) = L$

but f(a) is undefined

$$L \qquad f(a) \text{ does not } \\ \text{not } \\ y = f(x)$$

$$\lim_{x \to a} f(x) = L$$

and $f(a) \neq L$

limit suggests what f(a) might be, but it might not be correct. Properties of Limits

If
$$\lim_{x \to c} f(x) = L$$
 and $\lim_{x \to c} g(x) = M$, then
$$\lim_{x \to c} (f(x) + g(x)) = \lim_{x \to c} f(x) + \lim_{x \to c} g(x) = L + M$$

The limit of the sum of two functions is the sum of their limits.

2)
$$\lim_{x \to c} (f(x) \cdot g(x)) = \lim_{x \to c} f(x) \cdot \lim_{x \to c} g(x) = L \cdot M$$

The limit of a product of two functions is the product of their limits.

3)
$$\lim_{k \to f(x)} = k \cdot L$$
 eg $\lim_{x \to 2} 3x^2 = 3 \cdot \lim_{x \to 2} x^2$

The limit of a constant times a function is the constant times the limit of the function.

4)
$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\bot}{M}$$

The limit of the quotient of two function is the quotient of their limits.

5)
$$\lim_{x \to c} (f(x))^{\frac{r}{t}} = \begin{bmatrix} L \end{bmatrix}^{\frac{r}{t}}$$

The limit of a rational power of a function is that power of the limit of the function.

Determine the following limits:

1. $\lim_{x\to 5} 3$ 3	$ \begin{array}{ccc} 2. & \lim_{x \to c} 3 & & & & & & & & & & & & & & & & & \\ & & & & $	3. $\lim_{x\to c} k$
$4. \lim_{x \to 3} x$	$5. \lim_{x \to -5} x$	6. $\lim_{x \to a} x$

Using the properties of limits, we can see that

$$\lim_{x \to 3} 5x^2 - 7x + 4 = \lim_{x \to 3} 5x^2 - \lim_{x \to 3} 7x + \lim_{x \to 3} 4$$
$$= 5\lim_{x \to 3} x^2 - 7\lim_{x \to 3} x + \lim_{x \to 3} 4$$
$$= 5\left(\lim_{x \to 3} x\right)^2 - 7\lim_{x \to 3} x + \lim_{x \to 3} 4$$

Two further properties of limits:

6) If
$$f(x)$$
 is a polynomial function, then $\lim_{x\to c} f(x) = \{c\}$

The limit of a **polynomial** function can be found by direct substitution.

7) If
$$f(x)$$
 and $g(x)$ are polynomial functions, then $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{f(c)}{g(c)}$

The limit of a **rational function** can be found by direct substitution provided the denominator doesn't equal zero.

Determine the following limits:

1)
$$\lim_{x \to 3} 2x + 5$$
 2) $\lim_{x \to 5} \sqrt{4x^2 + x}$ 3) $\lim_{x \to 2} \frac{x + 2}{x^2 + 3x + 1}$ 4) $\lim_{x \to 0} \cos x$ = $2(3) + 5$ = $2 + 2$ = $2 +$

How do you evaluate limits when you can't use direct substitution?

Strategy – **Factor** and cancel common factors.

5)
$$\lim_{x \to 2} \frac{x-2}{x^2-4}$$
6) $\lim_{x \to 4} \frac{x+4}{x^2+6x+8}$

$$= \lim_{x \to 2} \frac{x+4}{(x^2+6x+8)}$$

$$= \frac{1}{-4+2}$$

$$= -\frac{1}{2}$$

Factoring note: Sums and differences of cubes can be factored according to the following:

$$x^{3} - y^{3} = (x - y)(x^{2} + xy + y^{2})$$
 $x^{3} + y^{3} = (x + y)(x^{2} - xy + y^{2})$

Note that these are both the product of a binomial and a trinomial.

$$27x^3 + 8y^3 = (3x + 2y)(9x^2 - 6xy + 4y^2)$$

 $x^3-27=(x-3)(x^2+3x+9)$

7)
$$\lim_{x \to -3} \frac{x+3}{2x^3 + 54}$$

\lim \frac{\times +3}{2(\times^3 + 27)}

$$\lim_{x \to 3} \frac{x+3}{2(x+3)(x^2-3x+9)}$$

$$= \frac{1}{2(9+9+9)}$$

$$= \frac{1}{5+1}$$

$$x^{2}-6xy+4y^{2}$$

$$8) \lim_{x\to 4} \frac{\frac{1}{x}-\frac{1}{4}}{3x-12} = \frac{\frac{4}{4x}-\frac{x}{4x}}{3(x-4)}$$

$$= \frac{4-x}{4x}$$

$$= \frac{1-x}{4x}$$

$$= -1(x-4)$$

$$= -1$$

Strategy – If limit involves square roots, multiply by the **conjugate**.

9)
$$\lim_{x \to 9} \frac{x-9}{\sqrt{x}-3} \cdot \frac{\sqrt{x}+3}{\sqrt{x}+3}$$

$$\lim_{x \to 9} \frac{(x-4)(\sqrt{x}+3)}{x}$$

$$= \sqrt{9} + 3$$

$$= 6$$

10)
$$\lim_{x \to 16} \frac{4 - \sqrt{x}}{16 - x} \cdot \frac{4 + \sqrt{x}}{4 + \sqrt{x}}$$

$$= \lim_{x \to 16} \frac{16 - x}{(16 - x)(4 + \sqrt{x})}$$

$$= \frac{1}{4 + \sqrt{16}}$$

$$= \frac{1}{8}$$

$$(a-b)(a+b) = a^{2}-b^{2}$$

$$11) \lim_{x\to 3} \frac{\sqrt{x+6}-x}{3-x} \frac{\sqrt{x+6}+x}{\sqrt{x+6}+x}$$

$$\lim_{x\to 3} \frac{x+6-x^{2}}{(3-x)(\sqrt{x+6}+x)}$$

$$\lim_{x\to 3} \frac{(-1)(x^{2}-x-6)}{(-1)(x-3)(\sqrt{x+6}+x)}$$

$$\lim_{x\to 3} \frac{(x-3)(x+2)}{(x+3)(\sqrt{x+6}+x)}$$

$$\lim_{x\to 3} \frac{(x-3)(x+2)}{(x+3)(\sqrt{x+6}+x)}$$

$$\lim_{x\to 3} \frac{(x-3)(x+2)}{(x+3)(\sqrt{x+6}+x)}$$

$$\lim_{x\to 3} \frac{(x-3)(x+2)}{(x+3)(\sqrt{x+6}+x)}$$

12)
$$\lim_{x \to 6} \frac{6-x}{\sqrt{2x+4}-4} \cdot \frac{\sqrt{2x+4} + 4}{\sqrt{2x+4} + 4}$$

$$\lim_{x \to 6} \frac{-(x-6)(\sqrt{2x+4} + 4)}{2x+4 - 16}$$

$$\lim_{x \to 6} \frac{-(x-6)(\sqrt{2x+4} + 4)}{2x - 12}$$

$$\lim_{x \to 6} \frac{-(x-6)(\sqrt{2x+4} + 4)}{2(x-6)}$$

9)
$$\lim_{x \to 0} \frac{x}{|x|}$$
 [f(x)]

10)
$$\lim_{x \to -5} \frac{x+5}{|x+5|}$$

$$\frac{f(x)}{f(x)}$$

$$f(.1) = 1$$
 if the limit exists, that they are not these should be very close is no limit is no limit

11) Given the function
$$f(x) = \begin{cases} -x & x < 0 \\ 3 & x = 0 \end{cases}$$
, determine the following $x > 0$

$$\lim_{x \to -4} f(x) = - \times \qquad \qquad \lim_{x \to 0^{-}} f(x) = - \times \times$$

$$= -(-4) \qquad \qquad = -(6)$$

$$= -(6)$$

$$\lim_{x \to 0^{+}} f(x) \le 0$$

$$= \left(\infty\right)^{2}$$

$$= \left(\infty\right)^{2}$$

$$\lim_{x \to 0} f(x) \le \infty^{2}$$

$$\lim_{x \to 3} f(x) = x^{2}$$

$$= (3)^{2}$$

$$= 9$$