Functions And Their Graphs

Definition of a Function

A function is a relation which assigns to each value in the domain only one value in the range. Graphically, a relation is a function if it passes the vertical line test.

Even and Odd Functions

A function is even if it has the property $f(x)=f(-x)$
Some examples of even functions are:

| $y=\cos x$ | | | |
| :---: | :---: | :---: | :---: | :---: |
| $y=\mid$ | $y=x^{4}$ | $y=3 x^{6}-5 x^{4}+x^{2}$ | $y=x^{\frac{2}{3}}$ |

The graphs of these functions possess an axis of symmetry at $x=0$ A function is odd if it has the property $f(x)=-f(-x)$

Some examples of odd functions are:
reflected both vertically and

The graphs of these functions possess rotational symmetry.
Knowing that a function is even or odd means that once you know how the graph behaves for $x \geq 0$, you can then determine what the other half of the graph looks like.

One-to-One Functions

A function is one-to-one if each element in the range corresponds with only one element in the domain.

- passes
a vertical line test
- passes a horizontal line test.

Which of the following functions are one-to-one?

$y=\sin x$	$y=2 x^{3}$	$y=3 x^{6}-5 x^{4}+x^{2}$	$y=x^{\frac{2}{3}}$	$y=\frac{1}{x}$
no	yes	no		

To test whether a function is one-to-one, use horizontal line test.

If a function is one-to-one, then

1) \qquad inverse is also a function
2) each output corresponds to a unique input.

The Greatest Integer Function: $y=\operatorname{int}(x)$ or $y=[x]$

Definition: $\operatorname{int}(x)=$ the greatest integer that is less than or equal to x

$\operatorname{int}(3)=-3$	$\operatorname{int}(3.1)=\mathbf{3}$	$\operatorname{int}(3.9)=3$	$\operatorname{int}(3.999)=3$	$\operatorname{int}(4)=\underline{4}$
$\operatorname{int}(-3)=-3$	$\operatorname{int}(-3.1)=\underline{-4}$	$\operatorname{int}(-3.9)=\underline{-4}$	$\operatorname{int}(0)=0$	$\operatorname{int}(-.1)=\square$

The graph of $y=\operatorname{int}(x)$:

$$
\begin{gathered}
(0,0) \\
(0.5,0) \\
(0.999999,0) \\
(1,1)
\end{gathered}
$$

Piecewise Functions

Sometimes a function may not be easily represented as a single function, but is instead composed of several "pieces" of different functions on different parts of its domain. A good example of a situation where this might occur is a bouncing ball. It could probably be represented as different parabolas for differing values of x.

$$
y= \begin{cases}f(x) & 0 \leq x<1 \\ g(x) & 1 \leq x<3 \\ h(x) & 3 \leq x<5 \\ i(x) & 5 \leq x<7\end{cases}
$$

It is important that you understand the definition of the function, and that you can draw a graph of the function.

Graph the following functions

1) $y= \begin{cases}x+3 & x \leq-1 \\ 4 & -1<x<2 \\ x^{2} & x \geq 2\end{cases}$
2) $y= \begin{cases}-x^{2} & -3 \leq x<1 \\ 5 & x=1 \\ x-2 & x>1\end{cases}$

3) Give a piecewise definition for $y=|x|$

$$
y=\left\{\begin{array}{cc}
x & x \geq 0 \\
-x & x<0
\end{array}\right.
$$

4) Graph the function $y=\frac{|x-1|}{x-1}$. Give a piecewise definition for the function.

$$
y=\left\{\begin{array}{cc}
1 & x>1 \\
n \cdot p & x=1 \\
-1 & x<1
\end{array}\right.
$$

