There are two methods for dividing fractions:

Method 1: Common Denominator
Write the fractions with a common__ denominator and divide
the numerators
common denominator between

$$
\frac{7}{8} \div \frac{3}{8}=\quad \frac{7}{3}
$$ 5 and 2 is 10

$$
\frac{3}{2} \times \frac{13}{5} \div \frac{4}{3} * \frac{5}{5} C . D=15
$$

$$
\frac{39}{15} \div \frac{20}{15}=\frac{39}{20}
$$

$$
\begin{aligned}
& \frac{4}{5} \div \frac{1}{2}= \\
& \frac{8}{10} \div \frac{5}{10}=\frac{8}{5} \\
& 3 \frac{1}{2} \div 1 \frac{2}{3}=\quad C \cdot D=6 \\
& \frac{7}{2} \div \frac{5}{3} \\
& \frac{21}{6} \div \frac{10}{6}=\frac{21}{10}
\end{aligned}
$$

Can $\frac{2}{3} \times \frac{5}{7}$ be changed into a division question?
yes but it is based on the second method. consider: $\frac{2}{3} \div 7$ means to split $\frac{2}{3}$ into 7 groups so each group is $\frac{1}{7}$ of $\frac{2}{3}$ $\frac{2}{3} \div 7$ is the same as $\frac{2}{3} \times \frac{1}{7}$ $54 \quad 7$ and $\frac{1}{7}$ are reciprocals.

To divide a fraction, you can also multiply $6 y$ its reciprocal
$\mathcal{E g}$

$$
\begin{aligned}
& \frac{7}{8} \div \frac{3}{8}=\frac{7}{8} \times \frac{1}{3}=\frac{7}{3} \\
& \frac{13}{5} \div \frac{4}{3}=\frac{13}{5} \times \frac{3}{4}=\frac{39}{20} \\
& \frac{4}{5} \div \frac{1}{2}=\frac{4}{5} \times \frac{2}{1}=\frac{8}{5} \\
& 3 \frac{1}{2} \div 1 \frac{2}{3}=\frac{7}{2} \div \frac{5}{3}
\end{aligned}
$$

$\begin{aligned} & \text { convert to } \\ & \text { improper fractions }\end{aligned} \frac{7}{2} \times \frac{3}{5}=\frac{21}{10}$ first
Eg. Jorge has a very rare Yu-Gi-Of card worth $\$ 5 \frac{1}{2}$. This is $\frac{3}{4}$ of the original price he paid for it. What price was it when he bought it?
$5 \frac{1}{2}$ is $\frac{3}{4}$ of original price.

$$
5 \frac{1}{2}=\frac{3}{4} \times \square
$$

this can be rewritten as a division.

$$
\begin{aligned}
\text { as } & \text { a division } \\
\square & =5 \frac{1}{2} \div \frac{3}{4} \\
& =\frac{11}{2} \div \frac{3}{4} \\
& =\frac{11}{2} \times \frac{42}{3} \\
& =\frac{22}{3} \text { or } \$ 7 \frac{1}{3}
\end{aligned}
$$

