Problems with Bohr Diagrams

- Bohr diagrams are great for drawing a _____<u>Single</u>
- Bohr diagrams include lots of things that are not important for bonding
- The only things that are really important for chemical bonding are:

 - The <u>chemical symbol</u> for the atom
 The <u>valence</u> <u>electrons</u>

Bohr vs Lewis Diagrams

- Lewis diagrams use the <u>chemical symbol</u>
 Lewis diagrams only include the <u>valence</u> <u>electrons</u>
- Electrons are placed at ompus point first
- After _____ electrons are placed, then we begin pairing them up

Examples

Draw a Lewis Diagram for:

Sodium Na Carbon

Chlorine

Lewis Diagrams for Ions and Ionic Compounds

- Very similar to Bohr Dragrams for 1005
- The only difference is that you only include valence electrons

Examples

Draw a Lewis Diagram for:

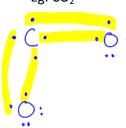
A Potassium Ion

$$\begin{bmatrix} NaCI & MgF_2 \\ Na \end{bmatrix}^{+} \begin{bmatrix} \vdots & \ddot{C}I \vdots \end{bmatrix}^{-1} \begin{bmatrix} Mg \end{bmatrix}^{+2} \begin{bmatrix} \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \end{bmatrix}^{-1}$$

Lewis Diagrams for Covalent Compounds

• Shared electrons, or <u>bonding</u> pairs, are drawn as a line,

Eg: HF



H = F: 2 do not participate in bonding.

bonding pair drawn as a line

• This allows allows us to show compounds that share more than one electron

Eg: CO₂

H-Ö-1

Diatomic Molecules

- There are 5000 special elements that form chemical bonds with themself 0_2 , N_2 , H_2 , F_2 , Cl_2 , Br_2 , I_2
- These are called the special <u>Seven</u> and they form a
 on the periodic table (almost)
 - · N:

- •
- :NEN:

- 1 worksheet
- 2) p62-64 in