Speed and Velocity

- Speed: (V) a scalar quantity measured as

- The distance an object travels divided by the time interval of the travel
- Velocity: (\vec{V}) a vector quantity measured as $\mathrm{km} / \mathrm{h} \quad \mathrm{m} / \mathrm{s}$
- The displacement of an object divided by the time interval -
- Describes how fast an object's and in which direction
 _ is changing
\qquad and in which
\qquad .

Determining Speed/ Velocity from a Position Time Graph

- The slope of a position time graph tells us the velocity. \qquad _.
- We can also use the equation: $\stackrel{\rightharpoonup}{v}=\frac{\Delta d}{\Delta t}$
- Steeper slopes indicate greater change in displacement for a time interval and greater

Average Velocity $\left(\overrightarrow{V_{a v}}\right)$

- The slope of the line will tell us direction

- It is very _hard \qquad to have perfect, uniform motion
- An average velocity worries only about the start
 and _end \qquad points
- Average velocity can be determined between any two points

$$
\begin{aligned}
& \frac{0-6}{\vec{V}}=\frac{\Delta}{\Delta t}=\frac{2 \mathrm{~m}}{6 \mathrm{~s}}=0.33 \mathrm{~m} / \mathrm{s} \\
& \frac{0-10 \mathrm{~s}}{\vec{V}}=\frac{\overrightarrow{\Delta d}}{\Delta t}=\frac{2 \mathrm{~m}}{10 \mathrm{~s}}=0.2 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Converting m / s and km /h

$$
\text { note: } 1 \mathrm{~km}=1000 \mathrm{~m} \quad \text { and } 1 \mathrm{~h}=3600 \mathrm{~s}
$$

- We think about speed/velocity as a fraction
- Multiply by _-_ conversion factors that are fancy "1"s
- Arrange units so that they cancel out.

Example: convert $90 \mathrm{~km} / \mathrm{h}$ into m / s.

$$
\begin{aligned}
& \frac{90 \mathrm{~km}}{\mathrm{~h}} \times \frac{1000 \mathrm{~m}}{k m} \times \frac{\mathrm{h}}{3600 \mathrm{~s}}=25 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& 25 \mathrm{~m} \\
& \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{\mathrm{km}}{1000 \mathrm{~m}} \times \frac{3600 \mathrm{~s}}{\mathrm{~h}}=90 \mathrm{~km} / \mathrm{h} .
\end{aligned}
$$

$$
\begin{array}{ll}
* \frac{\mathrm{~km}}{\mathrm{~h}} \rightarrow \frac{\mathrm{~m}}{\mathrm{~s}} & \begin{array}{c}
\text { divide } \\
\text { by } 3.6
\end{array} \\
\frac{\mathrm{~m}}{\mathrm{~s}} \rightarrow \frac{\mathrm{~km}}{\mathrm{~h}} & \begin{array}{c}
\text { multiply } \\
\text { by } 3.6
\end{array}
\end{array}
$$

p156-159 workbook.

