Increasing and Decreasing Functions

A continuous function is $\begin{aligned} & \text { increasing } \\ & \text { decreasing }\end{aligned}$ over [arb] if for all c and d with $a<c<d<b, \begin{aligned} & f(c)<f(d) \\ & f(c)>f(d)\end{aligned}$

Increasing Function

Decreasing Function

In terms of derivatives, we can say that if $f(x)$ is a function with continuous derivatives on an interval, then $f(x)$ is an) increasing function on the interval if $\begin{aligned} & f^{\prime}(x)>0 \\ & f^{\prime}(x)<0\end{aligned}$ for each x on the interval

In other words, the sign of the derivative tells you whether the function is increasing or decreasing.
In order for a continuous function to change from increasing to decreasing, it must past through a critical \qquad .
If the derivative has any discontinuities, intervals bounded by any points of discontinuity for either f or f^{\prime} are considered separately.

Find the intervals where the function is i) increasing $i i$) decreasing. Identify any extrema.

1. $y=x^{4}+2$

$$
y^{\prime}=4 x^{3}
$$

$$
y^{\prime}=0 \quad \text { when } x=0
$$

y^{\prime}

0

decreasing on $(-\infty, 0)$
increasing on $(0, \infty)$
global min at $f(0)=2$ when $x=0$

$$
\begin{aligned}
& \text { 2. } y=x^{3}-9 x \\
& y^{\prime}=3 x^{2}-9
\end{aligned}
$$

crit points

$$
\begin{gathered}
3 x^{2}-9=0 \\
3 x^{2}=9 \\
x^{2}=3 \\
x= \pm \sqrt{3}
\end{gathered}
$$

-2		0		2
		$-\sqrt{3}$		$\sqrt{3}$
y^{\prime}	3	0	-9	0

Increasing on $(-\infty,-\sqrt{3})$ and $(\sqrt{3}, \infty)$ decreasing on $(-\sqrt{3}, \sqrt{3})$
local max $f(-\sqrt{3})=6 \sqrt{3}$ when $x=-\sqrt{3}$
local min $f(\sqrt{3})=-6 \sqrt{3}$ when $x=\sqrt{3}$
3. $f^{\prime}(x)=x e^{x}$

Note: This is the derivative of the function
crit points

$$
x=0
$$

$$
y^{\prime} \quad \frac{-1}{e} \quad 0 \quad e
$$

decreasing on $(-\infty, 0)$ increasing on $(0, \infty)$

