Extreme Values
Global (Absolute) Extreme Values
If $f(x)$ is a function defined on a domain D , then $f(c)$ is a global maximum on D iff.

$$
f(c) \geq f(x) \text { where }
$$

x is a value in D $f(c)$ is a global minimum on D iff.

$$
f(c) \leq f(x) \text { where }
$$

x is a value in D

Graphed below is the function $y=x^{2}-1$ on differing domains as indicated. Determine any global extrema and where they occur.
global maximum of 3

"closed interval is one that includes
Extreme Value Theorem the endpoints" If f is a \qquad continuous function on a \qquad closed interval \qquad $[a, b]$, then f has both a global maximum and minimum on $[a, b]$

Note that the maximum or minimum could occur at either an interior point or at an endpoint.

If c is an interior point in the domain, then $f(c)$ is a:
a) relative maximum at c iff. $f(x) \leq f(c)$ for all x in some open interval containing c
b) relative minimum_ at c iff. $f(x) \geq f(c)$ for all x in some open interval containing c

Local Extrema also include \qquad global extrema

Where do extreme values occur?
If a function has a local extreme value at an \qquad interior \qquad c of its domain, and if f^{\prime} exists at c, then \qquad $f^{\prime}=0$

Critical Point - any point in the interior of the domain of f where either $f^{\prime}=0$ or
\qquad
\therefore Extreme values occur only at \qquad critical points or at \qquad endpoints.

* note: endpoints can be local or global max/min.

Extreme Values
Determine any extrema for the following functions on the indicated interval and where they occur. Also identify whether they are local or global extrema.

1) $f(x)=x^{3}-3 x^{2}$ on $[-2,5]$

Find the derivative: $\quad f^{\prime}(x)=3 x^{2}-6 x$

Determine if there are any critical points:

$$
f^{\prime}(x)=0
$$

(Horizontal tangents)

$$
\begin{gathered}
3 x^{2}-6 x=0 \\
3 x(x-2)=0 \\
x=0,2
\end{gathered}
$$

Determine the values of the function at then endpoints of the interval and at any critical points within the interval. Use the function values to ascertain whether there are any extrema.

If the interval had been $(-2,5)$, what difference (s) would this have made?
no global max or global min.
2) $f(x)=e^{-x}$ on $[-2,2]$

$$
\begin{aligned}
f^{\prime}(x) & =e^{-x} \cdot(-1) \\
f^{\prime}(x) & =-e^{-x} \\
-e^{-x} & =0
\end{aligned}
$$

endpoints

x	y	
-2	$e^{-(-2)}$ or e^{2}	global max
2	$e^{-(2)}$ or $\frac{1}{e^{2}}$	global min

$$
\begin{aligned}
& f^{\prime}(x)=-e^{-x} \\
&-e^{-x}=0 \\
& \quad \begin{array}{r}
\text { no solution. in } \\
\\
\end{array} \quad \text { domain }[-2,2]
\end{aligned}
$$

\therefore no critical points
3)

$$
\begin{aligned}
& f(x)=x^{2 / 3} \text { on }[-1,2] \\
& f^{\prime}(x)=\frac{2}{5} x^{-3 / 5} \\
& f^{\prime}(x)=\frac{2}{5 \sqrt[5]{x^{3}}}
\end{aligned}
$$

$f^{\prime}(x)$ can never $=0$ because no x in numerator
$\begin{array}{ccc}x & y & \\ -1 & 1 & \leftarrow \text { local max } \\ 0 & 0 & \leftarrow \text { global min }\end{array}$
$2 \sqrt[5]{2^{2}} \leftarrow$ global max
when $x=0$

