7.3 Nuclear Reactions Science 10 Notes

Nuclear Reactions vs Chemical Reactions	
Chemical reactions:	
Mass is <u>Conserved</u> , and energy changes are <u>Small</u>	
There are no nuclear changes in chemical reactions	
Electrons can be lost goined or shared	
Nuclear reactions (https://goo.gl/bGyBav):	
 The <u>nucleus</u> of the atom is <u>changed</u> 	
 Protons, <u>newrons</u>, <u>electrons</u> and /or gamma rays 	
can be lost or gained	
 There are small changes in moss 	
The mass is converted to huge amounts of energy.	
e= mc [*]	
energy mass speed of light (300 000 000 m	/s)
energy mass speed of light (500 000 000 000	
G of the river 225 and deceath a series are burning	
of Uranium-235 produces the same energy as burning	
2000 kg of coal.	
All nuclear power plants use a process called	
Nuclear Fission	
Occurs when a heavy nudeus splits into two	
smaller nucleu. A little bit of mass is lost and large	
amounts of energy are produced.	
Nuclear fission is an <u>Induced</u> nuclear reaction. This	
means that scientists start the nuclear reaction by	
shooting unstable nuclei with alpha, beta, gamma	
radiation, or other <u>Subatomic</u> particles	
+ + + + •	+ energy
4 14 17 1	
⁴ ₂ He ¹⁴ ₇ N ¹⁷ ₈ O ¹ ₁ H	
Bombarding Target Oxygen Hydrogen alpha particle nitrogen atom atom atom	
• 10 -	
the oc + N form 9°F which Immediately decays	

Nuclear Fission of U-235

- It is easiest to shoot a newton into a nucleus than a proton
- Most nuclear fission <u>reactors</u> and <u>bombs</u> this to start a nuclear reaction.
- A neuron crashes into an atom of wanium 235 to create Uranium -236 which undergoes radioactive decay

$$_0^1n + _{92}^{235}U \rightarrow _{36}^{92}Kr + _{56}^{141}Ba + 3_0^1n + energy$$

three neutrons can start more reactions.

- The extra neutrons can crash into other, nearby nuclei and cause those to decay and release energy as well.
- Once this nuclear reaction has started, it can get quickly out of control.
- Reactors have special materials to absorb newton 5
- Nuclear bombs operate on the principle of letting the reaction get out of control

most reactors don't use "critical mass" fuel. (U-235)

CanDu Reactors https://goo.gl/xMTeP1

Canada Deuterium Uranium

- reactors
- Produce heat to generate steam, which drives a two produce electricity

steam

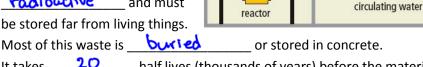
steam generator

fuel-loading

machine

turbine building

turbine


generator

Nuclear fission is dirty, meaning that it produces nuclear waste

Some waste products can be reused (fuel rods

Other products are very

radioactive and must be stored far from living things.

It takes half lives (thousands of years) before the material is sate.