7.2b Radiocarbon Dating and the Potassium Clock Science 10 Notes

Radiocarbon Dating

- When an organism dies, <u>Carbon</u> stops being replenished and the <u>carbon 14</u> starts to decay
- The ratio of <u>carbon-14</u> to <u>nitrogen-14</u> is measured.
 - o <u>carbon 14</u> is the <u>parent</u> isotope o <u>nitrogen 14</u> is the <u>daughter</u> isotope

6C -> 14N + 0 e parent = readant daughter = de ray product.

Carbon dating only works for times less than 50000 years

at the time that organism dies, it has the same "Is of carbon-12 as the atmosphere.

½ life = 6000 years

Carbon-14

now 100g 6000grs 50g

12000 25

18000 12.5

24000 ~6

30000

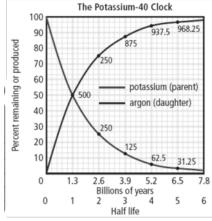
36000 ~1.5

42000 ~.7

48000 ~.3

Common Isotope Pairs

Isotope		Half-Life of	Effective Dating	
Parent	Daughter	Parent (years)	Range (years)	
carbon-14	nitrogen-14	5730	up to 50 000	
uranium-235	lead-207	710 million	> 10 million	
potassium-40	argon-40	1.3 billion	10 000 to 3 billion	
uranium-238	lead-206	4.5 billion	> 10 million	
thorium-235	lead-208	14 billion	> 10 million	
rubidium-87	strontium-87	47 billion	> 10 million	


401	40 X	. 0 .
40 K ->	20 AY	+ -1 6

The Potassium Clock

parent daughter

Measures the ratio of Potassium-40 and Argon -40.

- shows both K and Ar

Age in	Fraction of K	Fraction of Ar	Rah	
O	1	0	1:0	
ι	1 2	1 2	1:1	
2	4	34	1:3	
3	18	7 8	1:7	

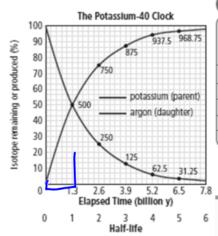


Figure 7.17 The blue line shows that the parent isotope is decaying. The red line shows that the daughter isotope is being produced.

Table 7.7 The Decay of Potassium-40							
Number of Half-Lives	Elapsed Time (billion y)	Amount of Potassium-40 Present	Amount of Argon-40 Present	Ratio of Argon-40 to Potassium-40			
0	0	1000 g	0	0:1			
1	1.3	500 g	500 g	1:1			
2	2.6	250 g	750 g	3:1			
3	3.9	125 g	875 g	7:1			
4	5.2	62.5 g	937.5 g	15:1			

Practice Problems

Try the following radioisotope dating problems yourself. You may wish to use Table 7.7 and Figure 7.17 on page 308.

- 1. What is the ratio of argon-40 to potassium-40 two half-lives after the rock has formed? Argon-40, Potussium
- 2. What ratio of argon-40 to potassium-40 remains 3.9 billion years after the rock formed?
- 3. (a) When there is more parent isotope present in a sample than there is daughter isotope, what does this tell you about the age of the sample in terms of half-lives?
 - (b) For how many years after the start of the potassium-40 clock is there more parent material than daughter material?

1.3 billion years, or one half life,

= 3:1

less/younger than one half life,

"when amount parent = daughter that is exactly one half life.