\qquad

1. Balance each of the following skeleton equations:
a) $\underset{_}{\boldsymbol{2}} \mathbf{H C l} \rightarrow \ldots \mathrm{H}_{2}+\ldots \mathrm{Cl}_{2}$
b) $\underline{\underline{2}} \mathrm{C}_{2} \mathrm{H}_{2}+\underline{\mathbf{5}} \mathrm{O}_{2} \rightarrow \underline{\mathbf{4}} \mathrm{CO}_{2}+\underline{\mathbf{2}} \mathrm{H}_{2} \mathrm{O}$
c) $ـ_{-} \mathrm{H}_{2} \mathrm{SO}_{4}+\ldots \ldots \mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \ldots \mathrm{CaSO}_{4}+\underset{\sim}{\mathbf{2}} \mathrm{H}_{2} \mathrm{O}$
d) $_\mathrm{SrCl}_{2}+\underset{\sim}{\boldsymbol{2}} \mathrm{NaNO}_{3} \rightarrow \ldots \quad \mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}+\underset{\sim}{\boldsymbol{2}} \mathrm{NaCl}$
e) $__{-}^{\mathbf{3}} \mathrm{Cl}_{2}+\underline{\mathbf{2}}_{-} \mathrm{FeBr}_{3} \rightarrow \underline{\mathbf{2}} \mathrm{FeCl}_{3}+$ _ $_{-} \mathrm{Br}_{2}$
2. Write the balanced equation for the following word equations:
a) iron + sodium chloride \rightarrow iron(II) chloride + sodium $\mathrm{Fe}+2 \mathrm{NaCl} \rightarrow \mathrm{FeCl}_{2}+2 \mathrm{Na}$
b) methane + oxygen \rightarrow carbon dioxide + water $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
c) phosphorus tribromide + bromine \rightarrow phosphorus pentabromide $\mathbf{P B r}_{3}+\mathbf{B r}_{2} \rightarrow \mathbf{P B r}_{5}$
d) calcium nitrate + potassium carbonate \rightarrow potassium nitrate + calcium carbonate $\mathbf{C a}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{K}_{2} \mathrm{CO}_{3} \rightarrow 2 \mathrm{KNO}_{3}+\mathbf{C a C O}_{3}$
3. Acids are chemicial compounds \qquad that produce a solution with a pH of \qquad less than 7 and bases are chemical compounds that produce a solution with a pH of _more_ than 7.
4. Neutral compounds have a pH of 7 , and are neither $_$acidic__ nor $_\underline{\text { basic__. }}$
5. Generally, the chemical formula for an acid starts with $\mathrm{a}(\mathrm{n}) \underline{\mathbf{H}}$ (hydrogen) and the chemical formula for a base ends with $\mathrm{a}(\mathrm{n}) \quad$ OH (hydroxide) \qquad .
6. Acids generally taste __sour
\qquad and bases generally taste \qquad bitter .
7. Name two acids and explain how they are involved or useful in your everyday life. HCl, hydrochloric acid (stomach acid) helps breakdown the food we eat. Ascorbic acid (vitamin C) in juice is an essential vitamin. Acetic acid (vinegar) is used in cooking, seasoning and some cleaners.
8. Name two bases and explain how they are involved or useful in your everyday life.

Soap is useful for cleaning (yourself and other objects).
Eggs and baking soda are in foods that we eat.
Antacids $\left(\mathbf{M g}(\mathbf{O H})_{2}\right)$ help combat heartburn.
9. Give the approximate pH value of the following substances:
a) Eggs __
c) Lemon \qquad e) Soap __ $\underline{10}$
b) Oven cleaner __ $\underline{\mathbf{1 3}}$
d) Water ____
f) Stomach acid ___
10. On the pH scale, one unit of change represents a ____ times change in the degree of acidity or basicity.
11. A lemon that has a pH of 2 is __100_ times more acidic than a tomato that has a pH of 4 .
12. pH indicators are chemicals that change colour \qquad depending on the pH of the solution they are placed in.
13. Litmus paper can be used to determine if a solution is \qquad acidic or __basic \qquad -
14. When blue litmus paper is placed in an acidic solution the paper turns _red \qquad .
15. When red litmus paper is placed in a basic solution the paper turns \qquad .
16. How can you use red and blue litmus paper to tell if a solution is neutral?

If you place red and blue litmus paper in a solution, they both will NOT change colours. Red litmus paper STAYS red and blue litmus paper STAYS blue when the solution is neutral.
17. What colour is methyl red at the following pH levels?
a) pH 4 \qquad b) pH 6 yellow
c) pH_{8} yellow
18. What colour is phenolphthalein at the following pH levels?
a) pH 4 colourless_
b) pH 6 colourless _
c) pH 8 _pink
19. Write the name of each of the following acids:
a) HBr _ hydrobromic acid
d) HNO_{3} _ nitric acid
b) $\mathrm{H}_{2} \mathrm{CO}_{3}$ _ carbonic acid
e) $\mathrm{CH}_{3} \mathrm{COOH}$ __ acetic acid
c) $\mathrm{H}_{2} \mathrm{~S}$ _hydrosulphuric acid
f) HCN _hydrocyanic acid
20. The common name for the acid found in vinegar is _acetic acid
21. The chemical name for battery acid is _sulphuric acid
22. Write the chemical formula of each of the following acids:
a) Hydrochloric acid $\quad \underline{\mathbf{H C l}}$
c) Hydroiodic acid \qquad
b) Sulphurous acid $ـ_{-}^{\mathbf{H}_{2}} \underline{S O}_{3}$
d) Perchloric acid \qquad
23. The chemical name of the base used as an antacid is _ magnesium hydroxide \qquad _.
24. The chemical name of the base used in oven and drain cleaning products is _sodium hydroxide and it's formula is \qquad NaOH .
25. In solution, acids produce \qquad ions and bases produce $\quad \underline{\mathbf{O H}^{-}}$ \qquad ions.
26. Solutions with a high concentration of hydrogen ions $\left(\mathrm{H}^{+}\right)$have a _low \qquad (high/low) pH , while solutions with a high concentration of hydroxide ions $\left(\mathrm{OH}^{-}\right)$have a __high \qquad (high/low) pH .
27. When an acidic solution is mixed with a basic solution, they can neutralize each other. Explain why this happens, being sure to write the chemical formula that occurs when hydrogen ions react with hydroxide ions. H^{+}ions and OH^{-}ions react with each other to form water: $\mathbf{H}^{+}+\mathbf{O H}^{-} \rightarrow \mathbf{H}_{2} \mathbf{O}$ The hydrogen ions from the acid react with the hydroxide ions from the base to form water, a neutral compound. (Hence the term neutralization.)
28. Acids and bases form ions_ when dissolved in water and are both electrically _conductive
29. A salt is made up of a _positive_ion from a(n) _base__ and a _negative ion from a(n) $_$acid_.
30. The chemical formula for common table salt is \qquad $-\mathrm{NaCl}$.
31. Describe the term neutralization reaction and provide an example.

Neutralization is the name for a type of chemical reaction that occurs when an acid and a base react to form a salt and water.
$\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
32. Complete and balance the following neutralization reactions:
a) $\ldots Z_{-} \mathrm{HBr}+\ldots \mathrm{KOH} \rightarrow \underline{\mathbf{K B r}}+\underline{H}_{2} \underline{\mathbf{O}}$
b) $\ldots \mathrm{H}_{2} \mathrm{SO}_{4}+\ldots \mathrm{Mg}(\mathrm{OH})_{2} \rightarrow-\mathbf{M g S O}_{4}+\ldots \underline{\mathbf{2}}_{\underline{\mathbf{H}}}^{2} \mathbf{O}$

33. A metal oxide is a type of chemical compound that contains a metal chemically combined with oxygen.
34. When a metal oxide dissolves in water, the solution becomes basic
35. Complete and balance the following reactions involving metal oxides and water:
a) $_\mathrm{K}_{2} \mathrm{O}_{(\mathrm{s})}+\ldots \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \underline{\mathbf{2}} \mathbf{K O H}$
b) $\ldots \mathrm{MgO}_{(\mathrm{s})}+\ldots \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow-\underline{\mathbf{M g}(\mathbf{O H})_{2}}$
c) $_L_{-} \mathrm{Li}_{2} \mathrm{O}_{(\mathrm{s})}+\ldots \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \underline{\mathbf{2} \mathbf{L i O H}}$
36. A non-metal oxide is a type of chemical compound that contains a \qquad non-metal chemically combined with _oxygen _.
37. When a non-metal oxide dissolves_in water, the solution becomes acidic
\qquad _.
38. Complete and balance the following reactions involving non-metal oxides and water:
a) $\ldots \mathrm{SO}_{2(\mathrm{~g})}+\ldots \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \ldots \mathrm{H}_{2} \mathrm{SO}_{3}$
b) $\ldots \mathrm{CO}_{2(\mathrm{~g})}+\ldots \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow-\underline{\mathrm{H}}_{2} \mathrm{CO}_{3}$
c) $_\mathrm{SO}_{3(\mathrm{~g})}+\ldots \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow-\underline{\mathbf{H}}_{2} \underline{\mathbf{S O}}_{4}$
39. Describe how the burning of fuels contributes to the environmental problem of acid precipitation, otherwise known as acid rain. Fuels such as coal and gasoline burn in the presence of oxygen. The products are non-metal oxides which are released into the atmosphere. These non-metal oxides dissolve in rainwater to produce acid precipitation. Acid precipitation can be extremely harmful to plants and freshwater ecosystems (lakes \& rivers).
40. When metals react with acids they tend to release $-\underline{\text { hydrogen gas }\left(\mathbf{H}_{2}\right)}$ as a product.
41. Organic compounds are compounds containing ___ carbon_.
42. The term organic compound refers to almost all \qquad carbon containing compounds, while the term inorganic compound refers to compounds that generally do not contain carbon \qquad -.
43. Inorganic compounds that DO contain carbon are \qquad , __carbides \qquad , and oxides
44. Classify each of the following compounds as either organic or inorganic:
a) CaSO_{4} inorganic
e) $\mathrm{K}_{2} \mathrm{HC}_{6} \mathrm{H}_{5} \mathrm{O}_{7}$ \qquad organic
b) CH_{4} _organic
f) SiC inorganic
c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
organic
g) $\mathrm{C}_{5} \mathrm{H}_{12}$ _organic
d) CO_{2} inorganic
h) CoCO_{3} inorganic
45. A hydrocarbon_is a special type of organic compound that contains only the elements carbon and hydrogen.
46. The simplest hydrocarbon is _methane__. It consists of one carbon atom bonded to __ $\mathbf{4} \quad$ _ hydrogen atoms.
47. An alcohol is another special type of organic compound. It contains only the elements _carbon \qquad , hydrogen , and \qquad .

