Science 10 Notes: Chemical Reactions – Writing and Balancing Equations

Terms to know:

Reactants, products, chemical reaction, law of conservation of mass,

Skeleton equation, word equation, symbolic equation, balanced equation

chemical reactants		ls	chemical products.		
nitrogen mo	noxide gas +	oxygen gas → r	nitrogen dioxide gas	word	equation.
NO	' +	02 -	NO₂	< skeleton	equation
Law of conservation of mass:	mass	of all	readants =	mass of	products.

For chemical reactions, this means that the number of atoms in the reactants must equal:

the number of atoms in the products.

How to balance a chemical reaction:

1. Start with the skeleton equation. You may need to find the chemical formulas from the names of the compounds.

Be aware of common names: water : H2O

And

Diatomic molecules:

O2, N2, H2, C12, I2, Br2, F2

- 2. Simple equations can be balanced by adding coefficients by trial and error / common sense
 - 🛪 a. Balance compounds first
 - b. Add coefficients only. Do not change subscripts
 - c. If you add a coefficient to a compound, balance all of those atoms first before moving on
 - d. Make sure that all of the coefficients are whole numbers. You can double or triple all of the coefficients if necessary
 - e. Polyatomic ions can be treated as a whole unit

Eg: $H_{2(g)} + CI_{2(g)} \rightarrow HCI_{(aq)}$

 $CH_4 + O_2 \rightarrow CO_2 + H_2O$

 $CH_4 + 20_2 \rightarrow CO_2 + 2H_2O_2$

 $H_2 + Cl_2 \rightarrow 2HCI$

HV CIV H√ C√ 0 3. Balance the following:

 $FeBr_3 + CaS \rightarrow Fe_2S_3 + CaBr_2$

 $Ca(NO_3)_2 + HCI \rightarrow CaCI_2 + HNO_3$

2FeBrz +3Cas -> Fe2S3+3CaBrz

Fe√	NO3 🗸
Brv	Cav
Car	$H \checkmark$
$<$ \checkmark	Cl

4. Complicated equations can be balanced by counting atoms:

```
Ex 12: C_3H_7OH + O_2 \rightarrow CO_2 + H_2O
```

 $IC_{3}H_{7}OH + 4.50_{2} \rightarrow 3CO_{2} + 4H_{2}O$ multiply to get rid of decimal or fraction coefficients $H \vee$ $2C_{3}H_{7}OH + 9D_{2} \rightarrow 6CO_{2} + 8H_{2}O$

Eg. Plants convert carbon dioxide gas and water into glucose (C₆H₁₂O₆) and oxygen

$$6CO_2 + 6H_2O \longrightarrow 1C_6H_2O_6 + 6O_2$$

 CV
 HV p77 workbook.
 $0: 12 + 6 = 6 + 12$ p78-79