Date: \qquad
4.3 Rational Exponents

Complete the following table:

			Conclusion
$9=9^{1}$	$\sqrt{9} \bullet \sqrt{9}=9$	$9^{\frac{1}{2}} \cdot 9^{\frac{1}{2}}=9^{\prime}$	$\sqrt{9}=9^{\frac{1}{2}}$
$25=25^{1}$	$\sqrt{25} \cdot \sqrt{25}=25$	$25^{\frac{1}{2}} \cdot 25^{\frac{1}{2}}=25^{\prime}$	$\sqrt{25}=25^{\frac{1}{2}}$
$36=36^{1}$	$\sqrt{36} \cdot \sqrt{36}=36$	$36^{\frac{1}{2}} \cdot 36^{\frac{1}{2}}=36^{\prime}$	$\sqrt{36}=36^{\frac{1}{2}}$
$8=8^{1}$	$\sqrt[3]{8} \cdot \sqrt[3]{8} \cdot \sqrt[3]{8}=8$	$8^{\frac{1}{3}} \cdot 8^{\frac{1}{3}} \cdot 8^{\frac{1}{3}}=8^{1}$	$100^{\frac{1}{2}}=$
$27=27^{1}$	$\sqrt[3]{27} \square \sqrt[3]{27} \square \sqrt[3]{27}=$	$27^{\frac{1}{3}} \square 27^{\frac{1}{3}} \square 27^{\frac{1}{3}}=$	$3 \sqrt{8}=8^{\frac{1}{3}}$
			$64^{\frac{1}{3}}=$

Thus $x^{\frac{1}{2}}=\sqrt{x}$ and $x^{\frac{1}{3}}=\sqrt[3]{x}$.

$$
\sqrt[4]{x}=x^{\frac{1}{4}}
$$

Alternately, we could say that raising a number to the power of $\frac{1}{2}$ is the same as finding the square root of the number, and raising a number to the power of $\frac{1}{3}$ is the same as finding the \qquad cube root of the number.

By extension, $x^{\frac{1}{6}}=\sqrt[6]{X}$ and more generally,

be careful

$$
4 \sqrt{x} \neq \sqrt[4]{x}
$$

$$
\text { We also have } \begin{aligned}
(8)^{\frac{2}{3}}=\left(8^{2 \cdot \frac{1}{3}}\right) & =\left(8^{2}\right)^{\frac{1}{3}}=\sqrt[3]{8^{2}}=\frac{\sqrt[3]{64}}{}=4 \quad \text { or } \\
& =\left(8^{\frac{1}{3}}\right)^{2}=(\sqrt[3]{8})^{2}=\frac{(2)^{2}}{}=4 \quad(\sqrt[b]{X})^{a}
\end{aligned}
$$

Because rational numbers can be written in fractional or decimal form, we also have

$$
\begin{aligned}
& (32)^{8}=(32)^{\frac{4}{5}}=\sqrt{ }=-\quad \text { or } \\
& (32)^{8}=(32)^{\frac{4}{5}}=(\sqrt{-})=- \\
& (81)^{1.5}=81^{\frac{3}{2}}=(\sqrt{81})^{3}=81 \times 9=729
\end{aligned}
$$

or
Generally, we can say

$$
\sqrt{81^{3}}
$$

$$
x^{\frac{m}{n}}=\sqrt[n]{x^{m}}=(\sqrt[n]{x})^{m}
$$

denominator \rightarrow index of the root.

The exponent laws hold for rational exponents the same way they did for integral exponents.

1. Using exponent laws, rewrite the following with a single exponent:

$$
\begin{array}{l|l}
\text { a) } \begin{aligned}
&\left(5^{\frac{2}{3}}\right)\left(5^{\frac{7}{3}}\right) \\
&=5^{\frac{2}{3}+\frac{7}{3}} \\
&= \text { b) }\left(x^{-2}\right)\left(x^{-\frac{3}{2}}\right) \\
&=5^{\frac{-4}{2}+\frac{-3}{2}} \\
&==x^{-\frac{7}{2}} \\
&=5^{3}=\frac{1}{x^{\frac{3}{2}}} \rightarrow \frac{1}{\sqrt{x^{7}}}
\end{aligned}
\end{array}
$$

c)

$$
\begin{aligned}
\frac{7^{-0.8}}{7^{-0.5}} & =7^{-.8-(-.5)} \\
& =7^{-0.3} \\
& =7^{-\frac{3}{10}} \\
& =\frac{1}{\sqrt[1]{7^{3}}}
\end{aligned}
$$

$\begin{aligned} \text { d) } \begin{aligned} & \frac{16^{1.5}}{8^{4}}=\frac{\left(2^{4}\right)^{1 \cdot 5}}{\left(2^{3}\right)^{\cdot 4}} \\ & \text { converto } \\ & \text { pouers of }=\frac{2^{6}}{2^{1 \cdot 2}} \\ &=2^{6-1 \cdot 2} \\ &=2^{4 \cdot 8} \\ &=2^{\frac{48}{10}}=\sqrt[10]{2^{4.8}} \\ &=\sqrt[5]{2^{24}} \end{aligned} \end{aligned}$	$\text { e) } \begin{aligned} & \left(81 x^{8}\right)^{0.5} \\ & 81^{\frac{1}{2}} \cdot x^{4} \\ & 9 x^{4} \end{aligned}$	$\text { f) } \begin{aligned} \frac{3^{-\frac{1}{2}} \cdot 3^{\frac{1}{3}}}{3^{\frac{5}{6}}} \end{aligned}{\begin{aligned} & 3^{\frac{1}{3}} \\ & 3^{\frac{1}{2} \cdot 3^{\frac{3}{6}}} \text { or } \end{aligned}=3^{-\frac{1}{2}+\frac{1}{3}-\frac{5}{6}}}=3^{-\frac{3}{6}+\frac{-}{6}-\frac{5}{6}} .$
$\text { g) } \begin{aligned} & {\left[\left(x^{-2}\right)\left(x^{\frac{2}{3}}\right)\right]^{-\frac{1}{4}} } \\ = & x^{\frac{2}{4}} \cdot x^{-\frac{1}{6}} \\ = & x^{\frac{6}{12}} \cdot x^{-\frac{2}{12}} \\ = & x^{\frac{4}{12}} \\ = & x^{\frac{1}{3}} \text { or } \sqrt[3]{x} \end{aligned}$	$\begin{aligned} & \text { h) }\left(\frac{x^{4}}{16}\right)^{-\frac{3}{4}} \\ & =\frac{x^{-3}}{16^{-\frac{3}{4}}} \\ & =\frac{16^{\frac{3}{4}}}{x^{3}} \\ & =\frac{(4 \sqrt{16})^{3}}{x^{3}}=\frac{2^{3}}{x^{3}}=\frac{8}{x^{3}} \end{aligned}$	$\text { i) } \begin{aligned} & {\left[\left(\frac{8}{27}\right)^{2}\left(\frac{8}{27}\right)^{-4}\right]^{-\frac{1}{3}} } \\ = & {\left[\left(\frac{8}{27}\right)^{-2}\right]^{-\frac{1}{3}} } \\ = & \left(\frac{8}{27}\right)^{\frac{2}{3}} \\ = & \frac{(\sqrt[3]{8})^{2}}{(\sqrt[3]{27})^{2}} \\ = & \frac{2^{2}}{3^{2}}=\frac{4}{9} \end{aligned}$

2. Moneybags invests $\$ 8000$ in a fund which earns 9.6% per year. The bank provides an electronic update on the value of the fund every 3 months using the formula $A=8000(1.096)^{\frac{\pi}{4}}$ where \times represents the number of 3 month (quarter of a year) periods that have passed.
a) How are the interest rate of 9.6% and the value of 1.096 in the formula related?
b) What is the value of the investment after 9 months?
c) What is the value of the investment after 5 years?
d) What amount of money would Moneybags have had to invest 1 year ago so that she would now have $\$ 8000$?

Section 4.3 Extra Practice

1. Use the exponent laws to simplify each expression.
a) $\left(x^{\frac{1}{2}}\right)\left(x^{\frac{7}{2}}\right)$
b) $\left(3 m^{4}\right)\left(m^{\frac{1}{4}}\right)$
c) $\left[\left(x^{1.5}\right)\left(x^{2.5}\right)\right]^{0.5}$
d) $\left(\frac{5 x^{3}}{20 x}\right)^{\frac{1}{2}}$
e) $\left(x^{\frac{2}{3}} y^{\frac{4}{3}}\right)^{3}$
2. Simplify each expression. State the answer using positive exponents.
a) $\left(y^{-2}\right)\left(y^{\frac{5}{2}}\right)$
b) $\left(-8 x^{-6}\right)^{\frac{1}{3}}$
c) $\frac{\left(x^{3}\right)^{\frac{1}{2}}}{\left(x^{\frac{5}{2}}\right)^{\frac{1}{5}}}$
d)
$\left(\frac{x^{\frac{1}{4}}}{16 x^{\frac{3}{4}}}\right)^{\frac{1}{2}}$
e) $\left(x^{\frac{1}{3}} y^{\frac{4}{5}}\right)^{0}\left(x^{\frac{1}{3}}\right)^{6}$
3. a) x^{4} b) $3 m^{\frac{17}{4}}$ c) x^{2} d) $\frac{x}{2}$ e) $x^{2} y^{4}$ 2. a) $y^{\frac{1}{2}}$ b) $\frac{-2}{x^{2}}$ c) x d) $\frac{1}{4 x^{\frac{1}{4}}}$ e) x^{2}
4. a) $5^{-3}=\frac{1}{125}$ b) $3^{-3}=\frac{1}{27}$ c) $2^{8}=256$ d) $3^{5}=243$ e) $\left(\frac{1}{5}\right)^{2}=\frac{1}{25} \quad 4$. a)
$7^{-3.6}=0.0009$ b) $4^{\frac{9}{2}}=512$ c) $7^{2}=49$ d) $\frac{6^{\frac{2}{3}}}{3}=1.1006 \quad$ e) $3^{-1}=0.3333$
5. a) The number of bacteria increases by 1.5 times every 40 h .
b) 7500 . There are 7500 bacteria after 40 h .
c) $5154.385 ; 5154.385-5000=154.385$. There are approximately 154 more bacteria after 3 h .
d) Example: The value $h=0$ indicates the starting population of 5000 bacteria.
6. Evaluate without using a calculator. Leave each answer as a rational number.
a) $\frac{5^{-2}}{125^{\frac{1}{3}}}$
b) $\frac{9^{\frac{3}{2}}}{27^{2}}$
c) $\left(8^{\frac{2}{3}}\right)\left(16^{\frac{3}{2}}\right)$
d) $\left(3^{-2}\right)^{\frac{-5}{2}}$
e) $\left(125^{\frac{-1}{3}}\right)^{2}$
7. Evaluate using a calculator. Give the result to four decimal places, if necessary.
a) $\left(7^{1.2}\right)^{-3}$
b) $\left(4^{3}\right)\left(4^{\frac{3}{2}}\right)$
c) $\left(7^{3}\right)^{\frac{2}{3}}$
d) $\left(\frac{6^{2}}{3^{3}}\right)^{\frac{1}{3}}$
e) $\left[\frac{3^{2}}{(-3)^{4}}\right]^{\frac{1}{2}}$
8. The growth of 5000 bacterium cells in a lab can be modelled using the expression $N=5000(1.5)^{\frac{h}{40}}$, where N is the number of bacteria after h hours.
a) What does the value 1.5 in the expression tell you?
b) How many bacteria are there after 40 h ?
c) How many more bacteria are there after 3 h ?
d) What does $h=0$ indicate?
