4.3 Rational Exponents

Complete the following table:

			Conclusion
9 = 91	√9 • √9 = ~4	9½ 9½ = 9	J9 = 9 ⁻¹
25 = 25¹	√25 •√25 = 25	25½ 25½ = 25′	$\sqrt{25} = 25^{\frac{1}{2}}$
36 = 36 ¹	√36 •√36 = 36	36 ^½ • 36 ^½ = 36 ^½	$\sqrt{36} = 36^{\frac{1}{2}}$
			$100^{\frac{1}{2}} =$
8 = 8 ¹	3/8 • 3/8 • 3/8 = 8	$8^{\frac{1}{3}} \cdot 8^{\frac{1}{3}} \cdot 8^{\frac{1}{3}} = 8^{\frac{1}{3}}$	3/8 - 8 3
27 = 27 ¹	3 √27 □ 3 √27 =	$27^{\frac{1}{3}} \square 27^{\frac{1}{3}} \square 27^{\frac{1}{3}} =$	
			64 ^{1/3} =

Thus
$$x^{\frac{1}{2}} = \sqrt{\chi}$$
 and $x^{\frac{1}{3}} = \sqrt{\chi}$

Alternately, we could say that raising a number to the power of $\frac{1}{2}$ is the same as finding the <u>Square</u> root of the number, and raising a number to the power of $\frac{1}{3}$ is the same as finding the <u>Cube root</u> number. index

By extension, $x^{\frac{1}{6}} = \sqrt[4]{x}$ and more generally, $x^{\frac{1}{n}} = \sqrt[4]{x}$

radicand

be careful $4\sqrt{x} \neq 4\sqrt{x}$ this is a coefficient index of the root

We also have
$$(8)^{\frac{2}{3}} = (8^{20\frac{1}{3}}) = (8^2)^{\frac{1}{3}} = \sqrt[3]{8^2} = \frac{\sqrt[3]{64}}{= (2)^2} = 4$$

$$= (8)^{\frac{1}{3}} = (8)^{\frac{1}{3}} =$$

$$X^{\frac{a}{b}} = \sqrt[b]{x^a}$$
or
 $(\sqrt[b]{x})^a$

Because rational numbers can be written in fractional or decimal form, we also have

$$(32)^{.8} = (32)^{\frac{4}{5}} = \sqrt{} = \underline{} = \underline{\phantom{a$$

The exponent laws hold for rational exponents the same way they did for integral exponents.

1. Using exponent laws, rewrite the following with a single exponent:

a)
$$(5^{\frac{2}{3}})(5^{\frac{7}{3}})$$

b) $(x^{-2})(x^{-\frac{3}{2}})$
 $-\frac{1}{2} + \frac{-3}{2}$
 $= \frac{7}{3}$
 $= \frac{7}{3}$
 $= \frac{7}{3}$
 $= \frac{7}{3}$
 $= \frac{1}{12}$
 $= \frac{1}{12}$

d) $\frac{16^{1.5}}{8^{.4}} = \frac{(2^{4})^{1.5}}{(2^{3})^{.4}}$ Convertor powers of $= \frac{2^{6}}{2^{1.2}}$ $= 2^{4.8}$ $= 2^{4.8}$ $= 2^{4.8}$ $= 2^{4.8}$ $= 5\sqrt{2^{24}}$	e) $(81x^8)^{0.5}$ $81 \cdot x^4$ $9x^4$	f) $\frac{3^{-\frac{1}{2}} \cdot 3^{\frac{1}{3}}}{3^{\frac{5}{6}}}$ or $= 3^{-\frac{1}{3} + \frac{1}{3} - \frac{5}{6}}$ $= 3^{-\frac{1}{6} + \frac{1}{6} - \frac{5}{6}}$ $= 3^{-\frac{1}{6}}$ $= 3^{-\frac{1}{3}}$
g) $\left[(x^{-2})(x^{\frac{2}{3}}) \right]^{-\frac{1}{4}}$ = $\times \times \times$ = $\times \frac{\frac{6}{12}}{12} \cdot \times \frac{\frac{2}{12}}{12}$ = $\times \frac{\frac{1}{12}}{12}$ = $\times \frac{\frac{1}{3}}{12}$ or $3 \times$	h) $\left(\frac{x^4}{16}\right)^{\frac{3}{4}}$ = $\frac{x^3}{16^{\frac{3}{4}}}$ = $\frac{16}{x^3}$ = $\frac{16}{x^3}$ = $\frac{16}{x^3}$ = $\frac{2}{x^3}$ = $\frac{8}{x^3}$	i) $\left[\left(\frac{8}{27} \right)^2 \left(\frac{8}{27} \right)^{-4} \right]^{-\frac{1}{3}}$ $= \left[\left(\frac{8}{27} \right)^2 \right]^{-\frac{1}{3}}$ $= \left(\frac{8}{27} \right)^{\frac{2}{3}}$ $= \frac{\left(\frac{8}{3} \right)^{\frac{2}{3}}}{\left(\frac{3}{27} \right)^2}$ $= \frac{2^{\frac{1}{3}}}{3^{\frac{1}{3}}} = \frac{4}{9}$

- 2. Moneybags invests \$8000 in a fund which earns 9.6% per year. The bank provides an electronic update on the value of the fund every 3 months using the formula $A = 8000 \left(1.096\right)^{\frac{4}{3}}$ where x represents the number of 3 month (quarter of a year) periods that have passed.
- a) How are the interest rate of 9.6% and the value of 1.096 in the formula related?

b)	What is the value of the investment after 9 months?
c)	What is the value of the investment after 5 years?
	What amount of money would Moneybags have had to invest 1 year ago so that would now have \$8000?

Section 4.3 Extra Practice

1. Use the exponent laws to simplify each expression.

$$\mathbf{a)} \left(x^{\frac{1}{2}} \right) \left(x^{\frac{7}{2}} \right)$$

b)
$$(3m^4) \left(m^{\frac{1}{4}}\right)$$

c)
$$[(x^{1.5})(x^{2.5})]^{0.5}$$

$$\mathbf{d}) \left(\frac{5x^3}{20x} \right)^{\frac{1}{2}}$$

e)
$$\left(x^{\frac{2}{3}}y^{\frac{4}{3}}\right)^3$$

2. Simplify each expression. State the answer using positive exponents.

a)
$$(y^{-2})(y^{\frac{5}{2}})$$

b)
$$\left(-8x^{-6}\right)^{\frac{1}{3}}$$

c)
$$\frac{\left(x^3\right)^{\frac{1}{2}}}{\left(x^{\frac{5}{2}}\right)^{\frac{1}{5}}}$$

$$\mathbf{d}) \left(\frac{x^{\frac{1}{4}}}{16x^{\frac{3}{4}}} \right)^{\frac{1}{2}}$$

e)
$$\left(x^{\frac{1}{3}}y^{\frac{4}{5}}\right)^0 \left(x^{\frac{1}{3}}\right)^6$$

1. a)
$$x^4$$
 b) $3m^{\frac{17}{4}}$ c) x^2 d) $\frac{x}{2}$ e) x^2y^4 **2.** a) $y^{\frac{1}{2}}$ b) $\frac{-2}{x^2}$ c) x d) $\frac{1}{4x^{\frac{1}{4}}}$ e) x^2

3. a)
$$5^{-3} = \frac{1}{125}$$
 b) $3^{-3} = \frac{1}{27}$ **c)** $2^8 = 256$ **d)** $3^5 = 243$ **e)** $\left(\frac{1}{5}\right)^2 = \frac{1}{25}$ **4. a)**

$$7^{-3.6} = 0.0009 \text{ b}$$
 $4^{\frac{9}{2}} = 512 \text{ c}$ $7^2 = 49 \text{ d}$ $\frac{6^{\frac{2}{3}}}{3} = 1.1006 \text{ e}$ $3^{-1} = 0.3333$

- 5. a) The number of bacteria increases by 1.5 times every 40 h.
- **b)** 7500. There are 7500 bacteria after 40 h.
- c) 5154.385; 5154.385 5000 = 154.385. There are approximately 154 more bacteria after 3 h.
- **d)** Example: The value h = 0 indicates the starting population of 5000 bacteria.

3. Evaluate without using a calculator. Leave each answer as a rational number.

a)
$$\frac{5^{-2}}{125^{\frac{1}{3}}}$$

b)
$$\frac{9^{\frac{3}{2}}}{27^2}$$

$$\mathbf{c}) \left(8^{\frac{2}{3}}\right) \left(16^{\frac{3}{2}}\right)$$

d)
$$(3^{-2})^{\frac{-5}{2}}$$

e)
$$\left(125^{\frac{-1}{3}}\right)^2$$

4. Evaluate using a calculator. Give the result to four decimal places, if necessary.

a)
$$(7^{1.2})^{-3}$$

b)
$$(4^3) (4^{\frac{3}{2}})$$

c)
$$(7^3)^{\frac{2}{3}}$$

$$\mathbf{d}) \left(\frac{6^2}{3^3} \right)^{\frac{1}{3}}$$

e)
$$\left[\frac{3^2}{(-3)^4} \right]^{\frac{1}{2}}$$

5. The growth of 5000 bacterium cells in a lab can be modelled using the expression

 $N = 5000(1.5)^{\frac{h}{40}}$, where *N* is the number of bacteria after *h* hours.

- a) What does the value 1.5 in the expression tell you?
- **b)** How many bacteria are there after 40 h?
- c) How many more bacteria are there after 3 h?
- **d)** What does h = 0 indicate?