1. The area of a square is 64cm^2 . Draw a picture that represents this information. What equation could you use to determine the side length of the square? What would the side length be?

$$S = \sqrt{64cm^2}$$
$$= 8cm$$

2. The volume of a cube is 64 cm^3 . Draw a picture that represents this information. What equation could be used to determine the edge length of the cube? What would the edge length be?

$$S=364cm^3$$
= 4 cm

4.1 Square Roots and Cube Roots

Study the table below of perfect squares and perfect cubes. What patterns do you observe?

Perfect	Prime	Square	Perfect	Prime Factorization	Cube Root
Squares	Factorization	Root	Cubes		
1		$\sqrt{1}=1$	1		$\sqrt[3]{1} = 1$
4	2x2	$\sqrt{4}=2$	8	2x2x2	$\sqrt[3]{8} = 2$
9	3x3	$\sqrt{9} = 3$	27	3x3x3	$\sqrt[3]{27} = 3$
16	2x2x2x2	$\sqrt{16} = 4$	64	2×2×2×2×2	$\sqrt[3]{64} = 4$
25	5x5	$\sqrt{25} = 5$	125	5x5x5	$\sqrt[3]{125} = 5$
36	2x2x3x3	$\sqrt{36} = 6$	216	2x2x2x3x3x3	$\sqrt[3]{216} = 6$
Ц			Ц		
			Ц		
100	2x2x5x5	$\sqrt{100} = 10$	1000	2x2x2x5x5x5	$\sqrt[3]{1000} = 10$
Ц			Ц		
Ш			Ц		
144	2x2x2x3x3x3	$\sqrt{144}=12$	1728	2x2x2x2x2x2x3x3x3	³ √1728 = 12

Thus $\sqrt{49} = \frac{7}{12}$ because $\frac{49}{12} = \frac{7}{12}$

And $\sqrt[3]{729} = 9$ because $\frac{729}{949} = \frac{9}{949}$

A perfect square is the product of _____ equal _factors_____

A perfect cube is the product of ______ gual __factors_____

How can prime factorization be used to determine if a number is a perfect square?

How can prime factorization be used to determine if a number is a perfect cube?

if factors can be put in groups of 3.

eg
$$\sqrt{3\times3\times3\times3\times\pi\times\pi\times\alpha\cdot\alpha} = 9\pi\alpha$$

1. Which of the following numbers is a perfect square? A perfect cube? Neither?

Justify your answer using i) prime factorization ii) your calculator

Prime Factorization

b)
$$300 = 2 \times 2 \times 3 \times 5 \times 5$$
 c) $729 = 3^6$

$$2^2 \cdot 3^3 \cdot 5^2$$

$$\frac{\text{Calculator}}{\sqrt{512}} = \frac{2}{2} \cdot \frac{2}{2} \cdot \frac{2}{2}$$

 $\sqrt[3]{512} = 2^3 = 8$

$$\sqrt[3]{300} = 6.69...$$
 $\sqrt[3]{729} = 3^2 = 9$

$$\sqrt{300} = 17.32...$$
 $\sqrt{729} = 3^3 = 27$

$$\sqrt[3]{729} = 3^2$$

2. Determine the answers to the following: (Use a calculator only when appropriate)

a)
$$(-4)^2 = -4 \times -4$$

b) $(-4)^3 = -4 \times -4$
c) $-3^2 = -3 \times 3$
= -64
= -9

b)
$$(-4)^3 = -4 \times -4 \times -4$$

c)
$$-3^2 = -3 \times 3$$

= -9

* note :
$$(-3)^2 \neq -3^2$$

$$\frac{3^3}{5} = \frac{3^3}{5!} = \frac{27}{5} \qquad \left(\frac{2}{3}\right)^4 = \frac{2^4}{3^4}$$

d)
$$-5^{3}$$
 $-(5^{3})$ $e)$ $(\frac{3}{5})^{3} = \frac{3}{5} \times \frac{3}{5} \times$

3. The volume of a cube is 512 in³. What is the surface area of the cube?

$$SA = 6 \times 8 \text{ in } \times 8 \text{ in}$$

4. The surface area of a sugar cube is 13.5 cm². What is the volume of the cube?

$$\frac{13.5 \, \text{cm}^2}{6} = \frac{6.\text{s}^2}{6}$$

$$\sqrt{= 5^3}$$

$$= (1.5 \, \text{cm})^3$$

$$= 3.375 \, \text{cm}^3$$

$$1.5 \, \text{cm} = 5$$

$$p 158 \# 1,3,4,6-11,14,16,18-20$$