4.1 Warmup

Name \qquad

1. The area of a square is $64 \mathrm{~cm}^{2}$. Draw a picture that represents this information. What equation could you use to determine the side length of the square? What would the side length be?

$$
\begin{aligned}
A=64 \mathrm{~cm}^{2}
\end{aligned} \quad \begin{aligned}
S & =\sqrt{64 \mathrm{~cm}^{2}} \\
& =8 \mathrm{~cm}
\end{aligned}
$$

2. The volume of a cube is $64 \mathrm{~cm}^{3}$. Draw a picture that represents this information. What equation could be used to determine the edge length of the cube? What would the edge length be?

$$
\begin{aligned}
S & =\sqrt[3]{64 \mathrm{~cm}^{3}} \\
& =4 \mathrm{~cm}
\end{aligned}
$$

\qquad

4.1 Square Roots and Cube Roots

Study the table below of perfect squares and perfect cubes. What patterns do you observe?

Thus $\sqrt{49}=7$ because $49=7 \times 7$
And $\sqrt[3]{729}=9$ because $729=9 \times 9 \times 9$
A perfect square is the product of \qquad equal factors

A perfect cube is the product of \qquad equal factors

How can prime factorization be used to determine if a number is a perfect square? if the factors can be put in pairs.
How can prime factorization be used to determine if a number is a perfect cube? if factors can be put in groups of 3 .
eg $\sqrt{3 \times 3 \times 3 \times 3 \times \pi \times \pi \times \underbrace{a \cdot a}}=9 \pi a$

Notice that some numbers are both perfect squares and perfect cubes (1 and 8)

1. Which of the following numbers is a perfect square? A perfect cube?

Neither?
Justify your answer using i) prime factorization ii) your calculator
a) 512
b) 300
c) 729

Prime Factorization
a) $512=2^{9}$
b) $300=2 \times 2 \times 3 \times 5 \times 5$
c) $729=3^{6}$

$$
128
$$ $2^{2} \cdot 3^{1} \cdot 5^{2}$

(2) 2

$$
\sqrt[3]{512}=2^{3}=8
$$

$$
\begin{array}{ll}
\sqrt{300}=17.32 \ldots & \sqrt{729}=3^{3}=27 \\
\sqrt[3]{300}=6.69 \ldots & \sqrt[3]{729}=3^{2}=9
\end{array}
$$

2. Determine the answers to the following: (Use a calculator only when appropriate)
a)

$$
\begin{aligned}
(-4)^{2} & =-4 x-4 \\
& =16
\end{aligned}
$$

b) $(-4)^{3}=-4 x-4 x-4$
c) $-3^{2}=-3 \times 3$
$=-64$
$=-9$

* note: $(-3)^{2} \neq-3^{2}$

$$
\frac{3^{3}}{5}=\frac{3^{3}}{5^{1}}=\frac{27}{5} \quad\left(\frac{2}{3}\right)^{4}=\frac{2^{4}}{3^{4}}
$$

3. The volume of a cube is $512 \mathrm{in}^{3}$. What is the surface area of the cube?

$$
\begin{aligned}
& V=512 \mathrm{in}^{3} \\
& \sqrt[3]{512 \mathrm{in}^{3}}=s \\
& s=8 \mathrm{in}
\end{aligned}
$$

$A=8 \mathrm{in} \times 8 \mathrm{in}$

$$
\begin{aligned}
S A & =6 \times \sin \times 8 \mathrm{in} \\
& =384 \mathrm{in}^{2}
\end{aligned}
$$

4. The surface area of a sugar cube is $13.5 \mathrm{~cm}^{2}$. What is the volume of the cube?

$$
\begin{aligned}
& \frac{13.5 \mathrm{~cm}^{2}}{6}=\frac{6 . \mathrm{s}^{2}}{6} \\
& \sqrt{2.25 \mathrm{~cm}^{2}}=\sqrt{s^{2}} \\
& 1.5 \mathrm{~cm}=s
\end{aligned} \quad \begin{aligned}
V & =s^{3} \\
& =(1.5 \mathrm{~cm})^{3} \\
& =3.375 \mathrm{~cm}^{3} \\
p 158 & \# 1,3,4,6-11,14,16,18-20
\end{aligned}
$$

