11.3B Warmup

1. Expand: $(2 x-y)^{4}$
2. Express the expansion of $(2 x-y)^{4}$ using combinations.

$$
(a+b)^{4}
$$

$$
\begin{gathered}
{ }_{4} C_{0}(a)^{4}+{ }_{4} C_{1} a^{3} b+{ }_{4} C_{2} a^{2} b^{2}+{ }_{4} C_{3} a b^{3}+{ }_{4} C_{4} b^{4} \\
{ }_{4} C_{0}(2 x)^{4}+{ }_{4} C_{1}(2 x)^{3}(-y)+{ }_{4} C_{2}(2 x)^{2}(-y)^{2}+{ }_{4} C_{3}(2 x)(-y)^{3}+{ }_{4} C_{4}(-y)^{4}
\end{gathered}
$$

3. Simplify: $(a+2 b)^{3}-(a-2 b)^{3}$
4. How many terms are there in the expansion of $(2 x-y)^{15}$?
5. What would the $10^{\text {th }}$ term in the expansion of $(2 x-y)^{15}$ be?
11.3B The Binomial Theorem

Visualizing - The Binomial Expansion of $(a+b)^{4}$

The Binomial Theorem (using combinations)
For any whole number n :

$$
\begin{gathered}
(a+b)^{n}={ }_{n} C_{0} a^{n} b^{0}+{ }_{n} C_{1} a^{n-1} b^{1}+{ }_{n} C_{2} a^{n-2} b^{2}+\ldots+{ }_{n} C_{k} a^{n-k} b^{k}+\ldots+{ }_{n} C_{n} a^{0} b^{n} \\
1^{\text {st }} \text { term } \quad 2^{\text {nd }} \text { term } \quad 3^{\text {rd }} \text { term } \quad \ldots \quad \text { term }
\end{gathered}
$$

For this expansion the general term is: $t_{k+1}=n C_{k}(a)^{n-k}(b)^{k}$

Example 1: Write the first four terms of the binomial expansion of $(x+2 y)^{12}$.
$1^{\text {st }}$ term

$$
\begin{aligned}
t_{k+1} & =t_{1} \\
k & =0 \\
t_{1} & ={ }_{12} C_{0}(x)^{12-0}(2 y)^{0}
\end{aligned}
$$

$$
\begin{aligned}
& k=2 \\
& { }_{12} C_{2}(x)^{12-2}(2 y)^{2}
\end{aligned}
$$

3rd term

$$
{ }_{12} C_{1}(x)^{12-1}(2 y)^{1}
$$

Example 2: Determine the $5^{\text {th }}$ term in the expansion of $(x-3)^{9}$.

$$
\begin{aligned}
& t_{k+1}={ }_{n} C_{k}(x)^{n-k}(y)^{k} \\
& t_{5}={ }_{9} C_{4}(x)^{5}(-3)^{4}
\end{aligned}
$$

Example 3 Find the coefficient on x^{3} in the expansion of $(1-2 x)^{12}$

$$
\begin{aligned}
t_{k+1} & ={ }_{n} C_{k}(1)^{n-k}(-2 x)^{k} \\
& ={ }_{12} C_{3}(1)^{12-3}(-2 x)^{3} \\
& =220(1)^{9}\left(-8 x^{3}\right) \\
& =-1760 x^{3}
\end{aligned}
$$

Example 4 One term in the expansion of $(x+a)^{8}$ is $448 x^{6}$. Determine the value of a.

$$
\begin{array}{rlrl}
{ }_{n} C_{k}(x)^{n-k}(a)^{k} & =448 x^{6} \\
{ }_{8} C_{2}(x)^{6}(a)^{2} & =448 x^{6} \\
28 x^{6} \cdot a^{2} & =448 x^{6} & , 28 a^{2}=448 \\
28 a^{2} x^{6} & =448 x^{6} & a^{2} & =16 \\
a & = \pm 4
\end{array}
$$

Example 5 The $4^{\text {th }}$ term in ty e expansion of $\left(x-\frac{1}{2}\right)^{n}$ is $-5 x^{7}$. Determine n.

$$
\begin{array}{r}
{ }^{k}=3 C_{3}(x)^{n-3}\left(-\frac{1}{2}\right)^{3} \\
n-3=7 \\
n=10
\end{array}
$$

Example 6 Determine the constant term in the expansion of $\left(x^{2}-\frac{1}{x}\right)^{6}$

$$
\begin{aligned}
& { }_{6} C_{k}\left(x^{2}\right)^{6-k}\left(-\frac{1}{x}\right)^{k} \\
& { }_{6} C_{4}\left(x^{2}\right)^{2}\left(-\frac{1}{x}\right)^{4} \quad \text { constant term }=15 \\
& 15\left(x^{4}\right)\left(\frac{1}{x^{4}}\right) \quad p 542 \# 1-21
\end{aligned}
$$

Combinatorics Review Warmup

1. How many arrangements of the letters in the word SCHOOLS are there if

a) there are no restrictions	b) the letter S must be at the end	c) the two O's must be together

2. How many five card hands are possible from a standard 52 card deck

a)containing exactly 3 clubs	b)containing 2 jacks, 2 aces and one other cardc)containing exactly 4 red cards d)containing at least 3 red cards		

3. Solve for n :

a) ${ }_{n} P_{2}=56$	b) $\frac{n!}{80}=(n-1)!$	c) ${ }_{n} C_{2}=28$

4. How many routes from A to B if you are always moving to get closer to B ?

Combinatorics Review

1. Simplify: $\frac{n(n+1)!}{(n-1)!}$
2. In the expansion of $(2 a-3 b)^{6}$, find the coefficient of the term containing $a^{4} b^{2}$
3. Solve for $n: \frac{(n-1)!}{(n-3)!}=30$
4. A coach must choose 3 out of 10 players for a tie-breaking penalty shot. If the coach must designate the order of the 3 players, how many arrangements are possible?
5. Determine the fourth term in the expansion $(x-2 y)^{5}$
6. Express ${ }_{33} C_{5}$ in factorial notation
7. There are 10 boys and 20 girls in a class. How many committees of 3 are possible if a committee contains 1 boy and 2 girls?
8. How many ways can a committee of 3 people be selected from a class of 30 ? How many ways can an executive committee (Pres., Vice Pres, Secretary) be selected from this class?
9. A toy box has 5 different cars and 6 different trucks.
a) How many ways can 5 toys be chosen if there are 2 cars and 3 trucks?
b) How many ways can 5 toys be chosen if there are at least 3 cars?
10. Assuming that you are always moving closer to B, how many paths are there from A to B ?
A

A

11. What is the $5^{\text {th }}$ number in the $27^{\text {th }}$ row of Pascal's triangle?
12. Given TSAWWASSEN, how many permutations are there
a) without restrictions
b) if the first letter must be S
c) the three S's are together
13. Find the $7^{\text {th }}$ term in the expansion $(3 x-2 y)^{15}$

Combinatorics Review Warmup

1. How many arrangements of the letters in the word SCHOOLS are there if

a) there are no restrictions	b) the letter S must be at the end	c) the two O's must be together

2. How many five card hands are possible from a standard 52 card deck

a)containing exactly 3 clubs	b)containing 2 jacks, 2 aces and one other cardc)containing exactly 4 red cards d)containing at least 3 red cards			

3. Solve for n :

a) ${ }_{n} P_{2}=56$	b) $\frac{n!}{80}=(n-1)!$	c) ${ }_{n} C_{2}=28$

4. How many routes from A to B if you are always moving to get closer to B ?
A

Combinatorics Review

1. Simplify: $\frac{n(n+1)!}{(n-1)!}$
2. In the expansion of $(2 a-3 b)^{6}$, find the coefficient of the term containing $a^{4} b^{2}$
3. Solve for $n: \frac{(n-1)!}{(n-3)!}=30$
4. A coach must choose 3 out of 10 players for a tie-breaking penalty shot. If the coach must designate the order of the 3 players, how many arrangements are possible?
5. Determine the fourth term in the expansion $(x-2 y)^{5}$
6. Express ${ }_{33} C_{5}$ in factorial notation
7. There are 10 boys and 20 girls in a class. How many committees of 3 are possible if a committee contains 1 boy and 2 girls?
8. How many ways can a committee of 3 people be selected from a class of 30 ? How many ways can an executive committee (Pres., Vice Pres, Secretary) be selected from this class?
9. A toy box has 5 different cars and 6 different trucks.
a) How many ways can 5 toys be chosen if there are 2 cars and 3 trucks?
b) How many ways can 5 toys be chosen if there are at least 3 cars?
10. Assuming that you are always moving closer to B, how many paths are there from A to B ?
A

A

11. What is the $5^{\text {th }}$ number in the $27^{\text {th }}$ row of Pascal's triangle?
12. Given TSAWWASSEN, how many permutations are there
a) without restrictions
b) if the first letter must be S
c) the three S's are together
13. Find the $7^{\text {th }}$ term in the expansion $(3 x-2 y)^{15}$

