11.2 Combinations

Investigate

1. If 5 sprinters compete in a race, how many different ways can the medals for first, second and third place, be awarded?

$$
{ }_{5} P_{3}
$$

Does the order of finish for the fastest three matter here? Order does matter This is an example of a permutation of 5 objects taken ${ }^{3}$ at a time.
2. If 5 sprinters compete in a race and the fastest 3 qualify for the relay team, how many different relay teams can be formed?

Visualize the 5 sprinters below. Since 3 will qualify for the relay team and 2 will not, consider the number of ways of arranging 3 Y's and 2 N's.

$\square 1$	2	3	\square	\square
Y	Y	Y	N	N
2	1	3		
3	1	2		

Does the order of finish for the fastest three matter here? no
This is an example of a combination of \qquad 5 objects taken \qquad 3 at a time.

Combinations

- An unordered arrangement of distinct objects is called a combination.
- The number of combinations of n distinct objects taken r at a time is

$$
{ }_{n} C_{r}=\binom{n}{r}=\frac{{ }_{n} P_{r}}{r!}=\frac{n!}{r!(n-r)!} \quad \text { with } \quad n \geq r \geq 0
$$

$$
\begin{array}{ll}
\text { Permutations } & C_{n} \text { Combination } \\
{ }_{n} \operatorname{Pr}=\frac{n!}{(n-r)!} & { }_{n} C_{r}=\frac{n!}{r!(n-r)!} \\
& n \text { choose } r^{\prime \prime} \\
{ }_{49} C_{7}=\frac{49!}{7!42!}=85,9 & 00,584
\end{array}
$$

Example 1:
a) How many different committees of 3 people can be formed from 7 people?
order does not matter

$$
{ }_{7}{ }^{\text {m } 7 \text { people? }} C_{3}=\frac{7!}{3!4!}
$$

b) How many different committees of 3 people can be formed from 7 people if the first person selected serves as the chairperson, the second as the treasurer, and the third as the secretary? order does matter

$$
{ }_{7} P_{3}=\frac{7!}{4!}
$$

c) If the group of 7 people consists of 3 males and 4 females, how many different committees of 3 people can be formed with 1 male and 2 females?
Think: you must choose 1 male out of the group of 3 males and 2 females out of the group of 4 females.

$$
\left.\begin{array}{lll}
1 \text { male and } & 2 \text { females } \\
{ }_{3} C_{1} & \times & { }^{2} C_{2} \\
3 & x & 6
\end{array}\right)
$$

d) If the group of 7 people consists of 3 males and 4 females, how many different committees of 3 people can be formed with at least one male on the committee?
1 m and $2 f$ or 2 m if or 3 m of

$$
\begin{aligned}
& { }_{3} C_{1} \times{ }_{4} C_{2}+{ }_{3} C_{2} \times{ }_{4} C_{1}+{ }_{3} C_{3} \times{ }_{4} C_{0} \\
& \frac{3!}{2!1!} \times \frac{4!}{2!2!}+\frac{3!}{1!2!} \times \frac{4!}{3!1!}+\frac{3!}{3!0!} \times \frac{4!}{4!0!} \\
& \text { Example 2: } 18+12+1=31
\end{aligned}
$$

a) Evaluate: $\frac{100!}{3!97!}=$
b) Solve: ${ }_{n} C_{2}=21$

$$
{ }_{100} C_{3}
$$

or $\frac{100 \times 99 \times 98 \times 97!}{3!\cdot 94!}=161700$

$$
\begin{aligned}
& c_{2}=\frac{n!}{2!(n-2)!}=21 \\
& \frac{n \times(n-1) \times(n-2)!}{2(n-2)!}=21 \\
& n^{2}-n=42 \\
& n^{2}-n-42=0 \\
& (n-7)(n+6)=0 \quad n=7
\end{aligned}
$$

Example 3:
A standard deck of 52 playing cards consists of 4 suits (spaces, hearts, diamonds, and clubs) of 13 cards each.
a) How many different 5-card hands can be formed?

$$
{ }_{52} C_{5}
$$

b) How many different 5-card hands can be formed that consist of all hearts?

$$
{ }_{13} C_{5}
$$

Club Diamond Heart Spade

c) How many different 5 -card hands can be formed that consist of all face cards? K, Q_{P})

$$
{ }_{12} C_{5}
$$

d) How many different 5 -card hands can be formed that consist of 3 hearts and 2 spades?

$$
{ }_{13} C_{3} \times 13 C_{2}
$$

e) How many different 5-card hands can be formed that consist of exactly 3 hearts? and 2 not hearts

$$
13 C_{3} \times 39 C_{2}
$$

f) How many different 5 -card hands can be formed that consist of at least 3 hearts?

$$
\begin{gathered}
3 H \text { and } 2 \text { non or } 4 H \text { and } 1 \text { non or } 5 H \text { and } O \text { non } \\
{ }_{13 C_{3}} \times{ }_{39} C_{2}+13 C_{4} \times 39 C_{1}+{ }_{13} C_{5} \times 39 C_{0} \\
286 \times 741+715 \times 39+1287 \times 1 \\
241098
\end{gathered}
$$

Example 4
A basketball coach has five guards and seven forwards on his basketball team.
a) In how many different ways can he select a starting team of two guards and three forwards?

$$
{ }_{5} C_{2} \times{ }_{7} C_{3}
$$

b) How many starting teams are there if the star player, who plays guard, must be included?

$$
\begin{aligned}
& \text { e if the star player, who plays guard, must be included? } \\
& \text { I star and lother guard and } \quad 3 \text { forwards } \\
& { }_{1} C_{1} \times \quad \times \quad{ }_{4} C_{1} \times C_{3}
\end{aligned}
$$

Example 5
a) Explain in words why ${ }_{10} C_{7}$ is the same as ${ }_{10} C_{3}$ choosing which 7 people to
the same as choosing which
b) Use factorial notation to show ${ }_{10} C_{7}={ }_{10} C_{3}$

$$
\frac{10!}{7!\cdot 3!}=\frac{10!}{3!\cdot 7!}
$$

c) Prove the identity: ${ }_{n} C_{r}={ }_{n} C_{n-r}$

$$
\begin{aligned}
\frac{n!}{r!(n-r)!} & =\frac{n!}{(n-r)!(n-[n-r])!} \\
& =\frac{n!}{(n-r)!(r)!}
\end{aligned}
$$

Example 6 3 people do not receive

During a basketball tournament, all players shake hands with each other at the end of the last game. If 300 handshakes were exchanged, how many players were at the tournament?

$$
\begin{aligned}
n=\text { \# of players. } \begin{aligned}
n C_{2} & =30 \\
\frac{n!}{2!(n-2)!} & =300 \\
\frac{(n)(n-1)(n-2)!}{2(n-2)!} & =300 \\
n(n-1) & =600 \\
n & =25 .
\end{aligned}
\end{aligned}
$$

