11.1B Permutations With Constraints

Example 1: Albane, Beau, Charlotte, Duncan and Eleanor go to watch a movie and sit in 5 adjacent seats. In how many ways can this be done under each of the following conditions?
a) without restrictions

$$
5!\quad 5 \quad 4321
$$

b) if Charlotte insists on sitting in the middle

$$
4-\frac{3}{4} \frac{1}{4}-1 \quad 4!
$$

c) if the three girls sit between Beau and Duncan

$$
\frac{2}{3} \frac{-}{2}-1_{<\text {airs }}^{<\text {Boys }}
$$

Boys: 2! ways to arrange their seats

Girls 3! ways to arrange their seats.

$$
2!\times 3!
$$

d) if Albane sits next to Beau

2 ! ways to arrange $A B$
$A B C D E$
个
4 people, 4 !
e) if Albane refuses to sit next to Beau
 B and A be together.

Example 2: In how many ways can four adults and five children be arranged in a single line under each condition?
$A B C D \leftharpoonup \quad \rightarrow 12345$
a) without restrictions
$9!$
c) if the adults are all together and the children are all together

within adults: 4! children: 5!
b) if children and adults are alternated

$$
\frac{5}{c} \frac{4}{A} \frac{4}{c} \frac{3}{4} \frac{3}{c} \frac{2}{4} \frac{2}{c} \frac{1}{4} \frac{1}{c}
$$

Children: 5!
Adults: 4!

$$
5!\times 4!
$$

d) if the adults are all together

$$
6 \text { things: } 6!
$$

$$
\begin{aligned}
& \text { within } \\
& \text { adult group : } 4!
\end{aligned}
$$

Example 3: How many ways can 4 boys and 3 girls sit in a row if:

$$
A B C D \quad 123
$$

a) there must be a boy at the beginning and end of
the row
Ends $: 4 P_{2}=\frac{4!}{(4-2)!}=\frac{4!}{2!}=4 \times 3$ all the boys sit together and all the girls sit
together
mir
girdle $5!$

Example 4: How many different 3 digit odd numbers can you make using the digits 1 to 6 if the numbers must be less than 700? No digits are repeated.

$$
60
$$

Example 5: Zoe has 6 maple, 5 fir and 3 pine trees that she wishes to plant in a row. The trees from the same species appear to be identical.
a) How many possible arrangements are there of the trees?

$$
\text { MMMMMM FFFFFPPP }=\frac{14!}{6!5!3!}
$$

b) If the first and last tree must be maple, how many arrangements are there?

