Stretching Graphs of Functions

1. Comparing the graphs of
$$y = f(x)$$
 and $y = f(x)$

Complete the following tables of values by first rewriting the equation with the indicated substitution and then solving the equation for y. The first one is completed for you.

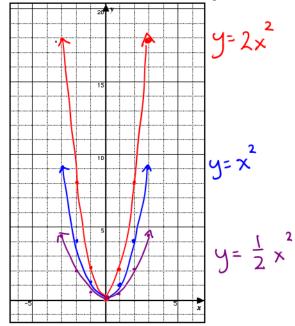
$$y = x^{2}$$

$$y = 2x^{2}$$

$$y = \frac{1}{2}x^{2}$$

$$y = \frac$$

Use the tables of values to graph and label each of the 3 functions on the grid below.



c) How can each of the following graphs be obtained from the graph of
$$y=x^2$$
?

i) $y=2x^2$
v. stretch by a factor of 2
(all y-coordinates are \times 2)

ii)
$$y = \frac{1}{2}x^2$$
 v. stretch by a factor of $\frac{1}{2}$ (all y-coords are $\times \frac{1}{2}$)

- d) In general, how is the graph of $y = ax^2$ obtained from the graph of $y = x^2$
 - ii) when 0 < a < 1? i) when a > 1?

Summary:

• If a > 1, the graph of y = af(x) is obtained when the graph of y = f(x) undergoes a

stretch (expansion) by a factor of a.

• If 0 < a < 1, the graph of y = af(x) is obtained when the graph of y = f(x) undergoes

Stretch (compression) by a factor of a.

Remember that the y-values of y = af(x) are obtained by multiplying each y-value of y = f(x) by the factor a.

What happens if a < 0? (negative) eg $y = -2x^2$ In general, if a < 0, the graph of y = af(x) is obtained when the graph of y = f(x) undergoes a

vertical stretch by a factor of a, along with a vertical reflection

NB: multiply every y-coord by -2 to find new y-coord

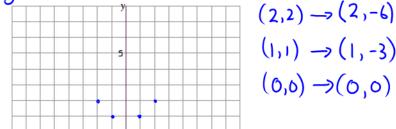
Note: The notation $\frac{y}{a} = f(x)$ is also used instead of y = af(x) to emphasize that the parameter a involves a y-direction: i.e., a vertical stretch. y = 2f(x) is same as $\frac{y}{2} = f(x)$ $\frac{1}{2}y = f(x)$ stretch in the *y*-direction: i.e., a *vertical* stretch.

$$\frac{9}{2}$$
 = f(x)

Example 1:

Sketch the graph of y = -3|x|.

We can obtain the graph of y = -3|x| from the graph of y = |x| through two transformations:

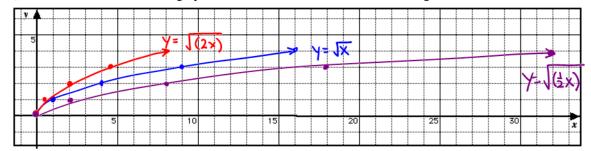


2. Comparing the graphs of y = f(x) and y = f(ax)

a) Complete the following tables of values. The first one is completed for you.

$y = \sqrt{x}$		$y = \sqrt{2x}$		$y = \sqrt{0}$	$y = \sqrt{(0.5x)}$ or $y = \sqrt{\frac{1}{2}x}$		
\underline{x}	<u>y</u>	X	<u>y</u>	X	y		
16	4	8	4	32	<u>y</u>		
16 9 4	3	8 4.5 2	3	18	3		
4	2	2	2	8	2		
1	1	0.5	1	2	1		
0	0	0	0	0	O		

b) Use the tables of values to graph and label each of the 3 functions on the grid below.



c) How can each of the following graphs be obtained from the graph of $y = \sqrt{x}$?

i) $y = \sqrt{2x}$ horizontal stretch by a factor of $\frac{1}{2}$

ii) $y = \sqrt{0.5x}$ h. stretch by a factor of $\frac{2}{1}$

d) In general, how is the graph of $y = \sqrt{(bx)}$ obtained from the graph of $y = \sqrt{x}$

i) when b > 1? h. compression by a factor of $\frac{1}{b}$ (stretch)

ii) when 0 < b < 1?

h. stretch (expansion) by a factor of b.

Summary:

• If b > 1, the graph of y = f(bx) is obtained when the graph of y = f(x) undergoes a

h. stretch (compression) by a factor of $\frac{1}{b}$. the reciprocal • If 0 < b < 1, the graph of y = f(bx) is obtained when the graph of y = f(x) undergoes

h. stretch (expansion) by a factor of $\frac{1}{b}$. the reciprocal

eg b=2 y=f(2x) stretch by $\frac{1}{2}$ b= $\frac{1}{2}$ $y=f(\frac{1}{2}x)$ stretch by $\frac{2}{1}$ Notice from your tables that for $y = \sqrt{2x}$ to have the same y-values as $y = \sqrt{x}$, the corresponding x-values of $y = \sqrt{2x}$ must be divided by the factor 2.

Thus in general, for y = f(bx) to have the same y-values as y = f(x), the corresponding x-values of y = f(bx) must be divided by the factor b.

In other words, if b > 1, it takes "less x" to do the job of building the function y = f(bx), so we have a horizontal compression of y = f(x). * you need a stretch to compensate for the coefficient you put in.

Also, if 0 < b < 1, it takes "more x" to do the job of building the function y = f(bx), so we have a horizontal expansion of y = f(x).

What happens if b < 0?

In general, if b < 0, the graph of y = f(bx) is obtained when the graph of y = f(x) undergoes a <u>horizontal</u>

Stretch by a factor of $\frac{1}{b}$, along with a <u>reflection in the y-axis</u>,

or as coordinate, x is multiplied by the negative reciprocal.

Example 2:

The grid below contains the graph of a function y = f(x). Sketch the graph of $y = f(-\frac{1}{3}x)$.

Multiply each x $(1,4) \rightarrow (-3,4)$ $(2,1) \rightarrow (-6,1)$ $(3,5) \rightarrow (-9,5)$ $(4,0) \rightarrow (-12,6)$

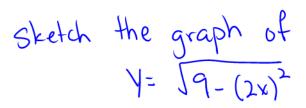
Example 3:

The graph of $y = \sqrt{9 - x^2}$ is shown to the right.

Sketch the graph of $2y = \sqrt{9 - x^2}$.

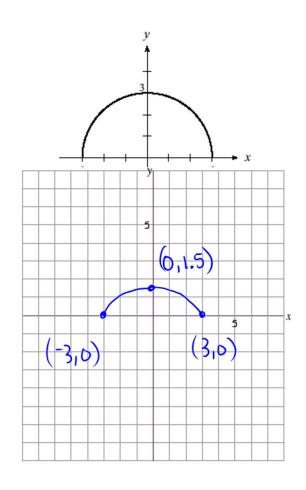
$$y = \frac{1}{2} \sqrt{9 - \chi^2}$$

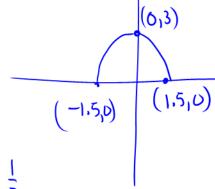
v. stretch by $\frac{1}{2}$



X → 2x

h. stretch (compression)
by a factor of 1/2.





$$y = f(x)$$

$$y = x^{2}$$

$$y = \frac{1}{x}$$

$$y = (x+3)^{2}$$

v. stretch by 2

$$y=2 \cdot x^2$$

 $y=2 \cdot \frac{1}{x}$ or $y=\frac{2}{x}$
 $y=2(x+3)^2$

h. stretch by 2
$$y=\left(\frac{1}{2}x\right)^{2}$$

$$y=\left(\frac{1}{2}x\right)$$

$$y=\left(\frac{1}{2}x+3\right)$$