Stretching Graphs of Functions

1. Comparing the graphs of $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ and $\quad y=c f(x)$
a) Complete the following tables of values by first rewriting the equation with the indicated substitution and then solving the equation for y. The first one is completed for you.

$$
y=x^{2}
$$

$$
y=2 x^{2}
$$

$$
y=\frac{1}{2} x^{2}
$$

x	y
-3	9
-2	4
-1	1
0	0
1	1
2	4
3	9

x	y
-3	18
-2	8
-1	2
0	0
1	2
2	8
3	18

x	y
-3	4.5
-2	2
-1	.5
0	0
1	.5
2	2
3	4.5

b) Use the tables of values to graph and label each of the 3 functions on the grid below.

c) How can each of the following graphs be obtained from the graph of $y=x^{2}$?
i) $y=2 x^{2}$
v. stretch by a factor of 2 (all y-coordinates are $\times 2$)
ii) $y=\frac{1}{2} x^{2} \quad$. stretch by a factor of $\frac{1}{2}$ (all y-coords are $\times \frac{1}{2}$)
d) In general, how is the graph of $y=a x^{2}$ obtained from the graph of $y=x^{2}$
i) when $a>1$?
ii) when $0<a<1$?
a stretch that increases
size (expansion)
a stretch that decreases size (compression)

Summary:

- If $a>1$, the graph of $y=a f(x)$ is obtained when the graph of $y=f(x)$ undergoes a
vertical stretch (expansion) by a factor of a.
- If $0<a<1$, the graph of $y=a f(x)$ is obtained when the graph of $y=f(x)$ undergoes a vertical stretch (compression)by a factor of a.

Remember that the y-values of $y=a f(x)$ are obtained by multiplying each y-value of $y=f(x)$ by the factor a.
What happens if $a<0$? (negative) eg $y=-2 x^{2}$
In general, if $a<0$, the graph of $y=a f(x)$ is obtained when the graph of $y=f(x)$ undergoes a
\qquad by a factor of a, along with a \qquad vertical reflection
NB: multiply every y-cord by -2 to find new y-cord Note: The notation $\frac{y}{a}=f(x)$ is also used instead of $y=a f(x)$ to emphasize that the parameter a involves a stretch in the y-direction: ie., a vertical stretch.

$$
y=2 f(x) \text { is same as }
$$

$$
\begin{aligned}
& \frac{y}{2}=f(x) \\
& \text { or } \\
& \frac{1}{2} y=f(x)
\end{aligned}
$$

Example 1:
Sketch the graph of $y=-3|x|$.
We can obtain the graph of $y=-3|x|$ from the graph of $y=|x|$ through two transformations:
a) reflection
b) v. stretch by a factor of 3

$$
\begin{aligned}
& (2,2) \rightarrow(2,-6) \\
& (1,1) \rightarrow(1,-3) \\
& (0,0) \rightarrow(0,0)
\end{aligned}
$$

2. Comparing the graphs of $y=f(x)$ and $y=f(a x)$
a) Complete the following tables of values. The first one is completed for you.

$y=\sqrt{x}$	$y=\sqrt{(2 x)}$		$y=\sqrt{(0.5 x)}$ or $y=\sqrt{\frac{1}{2} x}$	
x	y	x	y	3
16	4	8	4	32

$y=\sqrt{x}$

$$
y=\sqrt{(0.5 x}) \text { or } y=\sqrt{\frac{1}{2} x}
$$

b) Use the tables of values to graph and label each of the 3 functions on the grid below.

c) How can each of the following graphs be obtained from the graph of $y=\sqrt{x}$?
i) $y=\sqrt{(2 x)}$ horizontal stretch by a factor of $\frac{1}{2}$
ii) $y=\sqrt{(0.5 x)} \quad h$. Stretch by a factor of $\frac{2}{1}$
d) In general, how is the graph of $y=\sqrt{(b x)}$ obtained from the graph of $y=\sqrt{x}$
i) when $b>1$? h. compression by a factor of $\frac{1}{b}$ (stretch)

Summary:
ii) when $0<b<1$?
h. stretch (expansion) by a factor of $\frac{1}{b}$.

- If $b>1$, the graph of $y=f(b x)$ is obtained when the graph of $y=f(x)$ undergoes a h. Stretch (compression) by a factor of $\frac{1}{b}$. the reciprocal
- If $0<b<1$, the graph of $y=f(b x)$ is obtained when the graph of $y=f(x)$ undergoes a h. stretch (expansion) by fataueref $\frac{1}{b}$. the reciprocal

$$
\begin{array}{rl}
\text { eg } \quad b=2 & y=f(2 x) \\
& \text { stretch by } \frac{1}{2} \\
b=\frac{1}{2} & y=f\left(\frac{1}{2} x\right) \\
\text { streets } b y & \frac{2}{1}
\end{array}
$$

Notice from your tables that for $y=\sqrt{(2 x})$ to have the same y-values as $y=\sqrt{x}$, the corresponding x-values of $y=\sqrt{(2 x)}$ must be divided by the factor 2 .

Thus in general, for $y=f(b x)$ to have the same y-values as $y=f(x)$, the corresponding x-values of $y=f(b x)$ must be divided by the factor b.

In other words, if $b>1$, it takes "less x " to do the job of building the function $y=f(b x)$, so we have a horizontal compression of $y=f(x)$. * you need a stretch to compensate for the coefficient you put in.
Also, if $0<b<1$, it takes "more x " to do the job of building the function $y=f(b x)$, so we have a horizontal expansion of $y=f(x)$.

What happens if $b<0$?
In general, if $b<0$, the graph of $y=f(b x)$ is obtained when the graph of $y=f(x)$ undergoes a horizontal
\qquad by a factor of $\frac{1}{b}$, along with a \qquad reflection in the y-axis or as coordinate, x is multiplied by the negative reciprocal.
Example 2:
The grid below contains the graph of a function $y=f(x)$. Sketch the graph of $y=f\left(-\frac{1}{3} x\right)$. multiply each x

Example 3:
The graph of $y=\sqrt{9-x^{2}}$ is shown to the right.

Sketch the graph of $2 y=\sqrt{9-x^{2}}$.

$$
y=\frac{1}{2} \sqrt{9-x^{2}}
$$

v. stretch by $\frac{1}{2}$

Sketch the graph of

$$
\begin{aligned}
& y=\sqrt{9-(2 x)^{2}} \\
& x \rightarrow 2 x
\end{aligned}
$$

h. stretch (compression) by a factor of $\frac{1}{2}$.
$y=f(x)$

$$
\begin{aligned}
& y=x^{2} \\
& y=\frac{1}{x} \\
& y=(x+3)^{2}
\end{aligned}
$$

v. Stretch by 2

$$
y=2 \cdot x^{2}
$$

$$
y=2 \cdot \frac{1}{x} \text { or } y=\frac{2}{x}
$$

$$
y=2(x+3)^{2}
$$

h. stretch by 2

$$
\begin{aligned}
& y=\left(\frac{1}{2} x\right)^{2} \\
& y=\frac{1}{\left(\frac{1}{2} x\right)} \\
& y=\left(\frac{1}{2} x+3\right)^{2}
\end{aligned}
$$

