left 3 units

Math 12 Pre-Calculus
Warm-Up


1. The point $(-3,5)$ lies on the graph of $y=f(x+3)$. What must be a point on the graph of
a) $y=f(x) \quad(0,5)$
b) $y=f(x-2)$
c) $y=f(x)+4$ up 4
right 2

$$
\underset{(0,5)}{f(x)} \rightarrow \underset{(2,5)}{f(x-2)}
$$

$$
(0,9)
$$

d) $y=f(x+4)-7$
down 7, left 4
2. The point $(h, k)$ lies on the graph of $y=f(x)$. What must be a point on the graph of
a) $\begin{aligned} y= & f(x+1) \\ & \text { left } \mid\end{aligned}$

$$
\text { left } 1
$$

$$
\begin{aligned}
& (n-1, k) \\
& (n+2, k)
\end{aligned}
$$

b) $y=f(x-2)$

$$
(-4,-2)
$$

2. 

right 2
c) $y=f(x)+4$

$$
\text { up } 4
$$

$$
(h, k+4)
$$

d) $y=f(x+4)-7$

$$
(h-4, k-7)
$$

3. A function has equation $y=(x-3)(x-2)(x+1)$. Write the equation of the function that is translated right 2 units and up 3 units.

$$
\frac{x}{x-2} y(x-3-2)(x-2-2)(x+1-2)+3
$$

### 1.2 Reflections and Stretches

1. Comparing the graphs of $y=f(x)$ and $y=-f(x)$
a) Complete the second table of values. The first one is completed for you.

| $y=x^{2}$ |  |
| :--- | :--- |
| $x$ | $y$ |
| -3 | 9 |
| -2 | 4 |
| -1 | 1 |
| 0 | 0 |
| 1 | 1 |
| 2 | 4 |
| 3 | 9 |


b) Use the tables of values above to graph each of the functions on the grid below.


$(2,4) \longrightarrow(2,-4)$
c) For the two graphs, what is the relationship between the $y$-coordinates of points that have the same $x$-coordinates? $\quad Y$-coordinates are opposites, the points are $" r e f l e c t e d "$
d) Describe how the graph of $y=x^{2}$ is related to the graph of $y=-x^{2}$. (In other words, what happens to the graph of $y=x^{2}$ when a negative sign is placed in front of the term $x^{2}$ ?) reflected
e) In general, the graph of $y=-f(x)$ is a vertical reflection of the graph of $y=f(x)$ in the $x$-axis . (x-axis is the "mirror")
Note: The notation $-y=f(x))$ is sometimes used instead of $y=-f(x)$ to emphasize that the reflection involves a reversal of $y$-coordinates. $\quad-y=f(x)$
same as
$y=-f(x)$

$$
x \rightarrow-x
$$

2. Comparing the graphs of $y=f(x)$ and $y=f(-x)$.
a) Complete the second table of values. The first one is completed for you.
$y=2 x+3$
$y=2(-x)+3$

| $x$ | $y$ |
| ---: | ---: |
| -3 | -3 |
| -2 | -1 |
| -1 | 1 |
| 0 | 3 |
| 1 | 5 |
| 2 | 7 |
| 3 | 9 |


| $x$ | $y$ |
| :---: | :---: |
| -3 | 9 |
| -2 | 7 |
| -1 | 5 |
| 0 | 3 |
| 1 | 1 |
| 2 | -1 |
| 3 | -3 |

b) Use the tables of values above to graph each of the functions on the grid below.

c) For the two graphs, what is the relationship between the $x$-coordinates of points that have the same $y$-coordinates? they are opposites
d) Describe how the graph of $y=2 x+3$ is related to the graph of $y=2(-x)+3$. (In other horizontal words, what happens to the graph of $y=2 x+3$ when a negative sign is placed in front of the term $x$ ?)
e) In general, the graph of $y=f(-x)$ is a horizontal reflection of the graph of $y=f(x)$ in the $\qquad$ -

## Example 1:

In each case, the graph of a function $y=f(x)$ is shown. Sketch the graph of the reflected function indicated.
a) $y=-f(x) \measuredangle$ Vertical
b) $y=f(-x)$ < horizontal


## Example 2:

Using the graph of $f(x)=2 x^{3}-4$ on the left, sketch each of the indicated graphs.


## Example 3:

Given the function $f(x)=2 x^{3}-4$, write equations for
a) $y=-f(x)$

$$
\begin{aligned}
& y=-\left(2 x^{3}-4\right) \\
& y=-2 x^{3}+4
\end{aligned}
$$

b) $y=f(-x)$

$$
\begin{aligned}
y & =2(-x)^{3}-4 \\
& =2\left(-x^{3}\right)-4 \\
y & =-2 x^{3}-4
\end{aligned}
$$

1. Comparing the graphs of $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ and $c y=f(x)$
a) Complete the following tables of values by first rewriting the equation with the indicated substitution and then solving the equation for $y$. The first one is completed for you.

$$
y=x^{2}
$$

$y=2 \underbrace{2}$
$y=\frac{1}{2} x^{2}$

| $x$ | $y$ |
| ---: | ---: |
| -3 | 9 |
| -2 | 4 |
| -1 | 1 |
| 0 | 0 |
| 1 | 1 |
| 2 | 4 |
| 3 | 9 |


| $x$ | $y$ |
| ---: | :--- |
| -3 | 18 |
| -2 | 8 |
| -1 | 2 |
| 0 | 0 |
| 1 | 2 |
| 2 | $B$ |
| 3 | 18 |


| $x$ | $y$ |
| ---: | :--- |
| -3 | 4.5 |
| -2 | 2 |
| -1 | 0.5 |
| 0 | 0 |
| 1 | 0.5 |
| 2 | 2 |
| 3 | 4.5 |

b) Use the tables of values to graph and label each of the 3 functions on the grid below.

c) How can each of the following graphs be obtained from the graph of $y=x^{2}$ ?
i) $y=2 x^{2} \quad$ taller, $y$-coords are twice as big.
ii) $y=\frac{1}{2} x^{2} \quad$ Shorter, $\quad y$-coords are $\frac{1}{2}$ as big.
d) In general, how is the graph of $y=a x^{2}$ obtained from the graph of $y=x^{2}$
i) when $a>1$ ?
stretched / expanded
ii) when $0<a<1$ ?
squashed/ compressed

Summary:

- If $a>1$, the graph of $y=a f(x)$ is obtained when the graph of $y=f(x)$ undergoes a
vertical $\qquad$
$\qquad$ by a factor of $a$.
- If $0<a<1$, the graph of $y=a f(x)$ is obtained when the graph of $y=f(x)$ undergoes
vertical by a factor of $a$.

Remember that the $y$-values of $y=a f(x)$ are obtained by multiplying each $y$-value of $y=f(x)$ by the factor $a$.
What happens if $a<0$ ?
In general, if $a<0$, the graph of $y=a f(x)$ is obtained when the graph of $y=f(x)$ undergoes a vertical expansion/ by a factor of $a$, along with a $\qquad$ reflection in $x$-axis.
compression
Note: The notation $\frac{y}{a}=f(x)$ is also used instead of $y=a f(x)$ to emphasize that the parameter $a$ involves a stretch in the $y$-direction: ie., a vertical stretch.

$$
\text { coefficient "a" }=-3
$$

Example 1:
Sketch the graph of $y=-3|x|$.
We can obtain the graph of $y=-3|x|$ from the graph of $y=|x|$ through two transformations:
a) reflection
b) expanded by a factor of 3


$$
\begin{aligned}
& y=|x| \quad y=-3|x| \\
& (-1,1) \longrightarrow(-1,-3) \\
& (0,0) \rightarrow(0,0) \\
& (1,1) \rightarrow(1,-3)
\end{aligned}
$$

multiplied each $y$-cord by -3
do $1.2 b$ \#5.6
2. Comparing the graphs of $y=f(x)$ and $y=f(a x)$
a) Complete the following tables of values. The first one is completed for you.
$y=\sqrt{x}$
$y=\sqrt{(2 x)}$
$y=\sqrt{(0.5 x)} \quad y=\sqrt{\frac{1}{2} x}$

| $x$ | $y$ |
| ---: | ---: |
| 16 | 4 |
| 9 | 3 |
| 4 | 2 |
| 1 | 1 |
| 0 | 0 |


| $x$ | $y$ |
| :---: | :---: |
| 8 | 4 |
| 4.5 | 3 |
| 2 | 2 |
| 0.5 | 1 |
| 0 | 0 |


| $x$ | $y$ |
| ---: | ---: |
| 32 | 4 |
| 18 | 3 |
| 8 | 2 |
| 2 | 1 |
| 0 | 0 |

b) Use the tables of values to graph and label each of the 3 functions on the grid below.

c) How can each of the following graphs be obtained from the graph of $y=\sqrt{x}$ ?
i) $y=\sqrt{(2 x)} \quad$ compressed horizontally
ii) $y=\sqrt{(0.5 x})$ Stretched horizontally
d) In general, how is the graph of $y=\sqrt{(b x)}$ obtained from the graph of $y=\sqrt{x}$
i) when $b>1$ ?

$$
\begin{aligned}
& b>1 ? \\
& \text { eg. } y=\sqrt{2} x \quad \text { compression }
\end{aligned}
$$

$\left\{\begin{array}{c}\text { by a factor of } \frac{1}{b} \\ (\text { reciprocal })\end{array}\right.$

## Summary:

- If $b>1$, the graph of $y=f(b x)$ is obtained when the graph of $y=f(x)$ undergoes a
horizontal compression by a factor of $\frac{1}{b}$.
- If $0<b<1$, the graph of $y=f(b x)$ is obtained when the graph of $y=f(x)$ undergoes a horizontal expansion by a factor of $\frac{1}{b}$.

Notice from your tables that for $y=\sqrt{(2 x})$ to have the same $y$-values as $y=\sqrt{x}$, the corresponding $x$-values of $y=\sqrt{(2 x})$ must be divided by the factor 2 .

Thus in general, for $y=f(b x)$ to have the same $y$-values as $y=f(x)$, the corresponding $x$-values of $y=f(b x)$ must be divided by the factor $b$.

In other words, if $b>1$, it takes "less $x$ " to do the job of building the function $y=f(b x)$, so we have a horizontal compression of $y=f(x) . \quad y=f(x)$

$$
y=f(2 x)
$$

$(16,4)$
$(8,4)$
Also, if $0<b<1$, it takes "more $x$ " to do the job of building the function $y=f(b x)$, so we have a horizontal expansion of $y=f(x)$.
What happens if $b<0$ ? (negative) eg $y=\sqrt{-2 x}$
In general, if $b<0$, the graph of $y=f(b x)$ is obtained when the graph of $y=f(x)$ undergoes a horizontal expansion/ compression by a factor of $\frac{1}{b}$, along with a reflection in $y$-axis.

## Example 2:



The grid below contains the graph of a function $y=f(x)$. Sketch the graph of $y=f\left(-\frac{1}{3} x\right)$.


Example 3:
The graph of $y=\sqrt{9-x^{2}}$ is shown to the right.

Sketch the graph of $\frac{2 y}{2}=\frac{\sqrt{9-x^{2}}}{2}$.

$$
\begin{gathered}
y=\frac{\sqrt{9-x^{2}}}{2} \text { of } y=\frac{1}{2} \sqrt{9-x^{2}} \\
v_{0} \text { compress by } \frac{1}{2}
\end{gathered}
$$



