$$f(x) \xrightarrow{left 3 \text{ units}} f(x+3)$$

$$(-3,5)$$

The point (-3, 5) lies on the graph of y = f(x + 3). What must be a point on the 1. graph of

graph of

a)
$$y = f(x)$$

b) $y = f(x-2)$

c) $y = f(x) + 4$

op 4

$$(0, 9)$$

$$f(x+3-5)$$

$$f(x+3) \rightarrow f(x-2)$$

$$(2,5)$$

$$f(x+3) \rightarrow f(x-2)$$

$$(2,5)$$

$$f(x+3) \rightarrow f(x-2)$$

$$(2,5)$$

$$f(x+3) \rightarrow f(x-2)$$

$$(2,5)$$

- d) y = f(x + 4) 7
- 2. The point (h, k) lies on the graph of y = f(x). What must be a point on the graph of
 - a) y = f(x + 1)left 1 $b) \quad y = f(x-2)$ right 2 $c) \quad y = f(x) + 4$
 - (h-4, k-7)d) y = f(x + 4) - 7
- 3. A function has equation y = (x - 3)(x - 2)(x + 1). Write the equation of the function that is translated right 2 units and up 3 units.

$$y=(x-3-2)(x-2-2)(x+1-2)+3$$

$$y=(x-5)(x-4)(x-1)+3$$

1.2 Reflections and Stretches

1. Comparing the graphs of y = f(x) and y = -f(x)

a) Complete the second table of values. The first one is completed for you.

$y = x^2$				
X	у			
-3	9			
-2	4			
-1	1			
0	0			
1	1			
2	4			
3	9			

$y = -x^2$				
\mathcal{X}	y			
-3	-9			
-2	-4			
-1	-1			
0	0			
1	-1			
2 3	-4			
3	-9			

b) Use the tables of values above to graph each of the functions on the grid below.

$$y=x^{2} \longrightarrow y=-x^{2}$$

$$(2,4) \longrightarrow (2,-4)$$

- c) For the two graphs, what is the relationship between the y-coordinates of points that have the same x-coordinates? Y-coordinates are opposites, the points are "reflected"
- d) Describe how the graph of $y = x^2$ is related to the graph of $y = -x^2$. (In other words, what happens to the graph of $y = x^2$ when a negative sign is placed in front of the term x^2 ?) Teffected
- e) In general, the graph of y = -f(x) is a <u>Vertical reflection</u> of the graph of y = f(x) in the x axis is the "mirror"

Note: The notation -y = f(x) is sometimes used instead of y = -f(x) to emphasize that the reflection involves a reversal of y-coordinates. -y = f(x)

2. Comparing the graphs of y = f(x) and y = f(-x).

a) Complete the second table of values. The first one is completed for you.

$$y = 2x + 3$$

$$y = 2(-x) + 3$$

х	у	
-3	-3	
-2	-1	
-1	1	
0	3	
1	5	
2	7	
3	9	

X	y
-3	9
-2	7
-1	5
0	3
1	1
3	~
3	-3

b) Use the tables of values above to graph each of the functions on the grid below.

- c) For the two graphs, what is the relationship between the x-coordinates of points that have the same y-coordinates? They are opposites
- d) Describe how the graph of y = 2x + 3 is related to the graph of y = 2(-x) + 3. (In other words, what happens to the graph of y = 2x + 3 when a negative sign is placed in front of the term x?)
- e) In general, the graph of y = f(-x) is a <u>horizontal reflection</u> of the graph of y = f(x) in the <u> $-\Delta x i S$ </u>.

Example 1:

In each case, the graph of a function y = f(x) is shown. Sketch the graph of the reflected b) y = f(-x) horizontal function indicated.

a)
$$v = -f(x)$$

Example 2:

Using the graph of $f(x) = 2x^3 - 4$ on the left, sketch each of the indicated graphs.

$$f(x) = 2x^3 - 4$$

$$y = -f(x)$$

b)
$$y = f(-x)$$

a)
$$y = -f(x)$$

$$y = -(2x^3 - 4)$$

b)
$$y = f(-x)$$

Example 3:
Given the function
$$f(x) = 2x^3 - 4$$
, write equations for
a) $y = -f(x)$
 $y = -\left(2x^3 - 4\right)$
 $y = -\left(2x^3 - 4\right)$
 $y = -2x^3 + 4$
b) $y = f(-x)$
 $y = 2\left(-x^3\right) - 4$
 $y = -2x^3 - 4$

$$y = -2x^3 - 4$$

Stretching Graphs of Functions

Comparing the graphs of y = f(x) and cy = f(x)

Complete the following tables of values by first rewriting the equation with the indicated substitution and then solving the equation for y. The first one is completed for you.

$$y = x^2$$

$$y = 2x^2$$

$$y = 2x^2$$

$$y = \frac{1}{2}x^2$$

$$\begin{array}{c|cccc} x & y & \\ \hline -3 & 9 & \\ -2 & 4 & \\ -1 & 1 & \\ 0 & 0 & \\ 1 & 1 & \\ 2 & 4 & \\ 3 & 9 & \\ \end{array}$$

$$\begin{array}{c|cc}
x & y \\
-3 & 18 \\
-2 & 8 \\
-1 & 2 \\
0 & 0
\end{array}$$

$$\begin{array}{c|c}
-1 & 0.5 \\
0 & 0.5
\end{array}$$

Use the tables of values to graph and label each of the 3 functions on the grid below.

c) How can each of the following graphs be obtained from the graph of $y = x^2$?

$$i) y = 2x^2$$

i)
$$y = 2x^2$$
 taller, y-coords are twice as big.

- ii) $y = \frac{1}{2}x^2$ Shorter, y-coords are $\frac{1}{2}$ as big.
- d) In general, how is the graph of $y = ax^2$ obtained from the graph of $y = x^2$
 - i) when a > 1?

ii) when 0 < a < 1? squashed / compressed

Summary:

• If
$$a > 1$$
, the graph of $y = af(x)$ is obtained when the graph of $y = f(x)$ undergoes a
• If $0 < a < 1$, the graph of $y = af(x)$ is obtained when the graph of $y = f(x)$ undergoes a
• If $0 < a < 1$, the graph of $y = af(x)$ is obtained when the graph of $y = f(x)$ undergoes a
• Vertical Compression by a factor of a .

Remember that the y-values of y = af(x) are obtained by multiplying each y-value of y = f(x) by the factor a.

What happens if a < 0?

In general, if a < 0, the graph of y = af(x) is obtained when the graph of y = f(x) undergoes a

vertical expansion by a factor of a, along with a reflection in x-axis.

Note: The notation $\frac{y}{a} = f(x)$ is also used instead of y = af(x) to emphasize that the parameter a involves a stretch in the y-direction: i.e., a *vertical* stretch.

coefficient "a" = -3

Example 1:

Sketch the graph of y = -3|x|.

We can obtain the graph of y = -3|x| from the graph of y = |x| through two transformations:

b) expanded by a factor of 3

do 1.26 #5.6

Comparing the graphs of y = f(x) and y = f(ax)

Complete the following tables of values. The first one is completed for you.

<i>y</i> =	\sqrt{x}		$\sqrt{(2x)}$	$y = \sqrt{0}$	$\overline{0.5x}$)	y=√= ×
\underline{x}	<u>y</u>	<u>X</u>	y	\underline{x}	y	
16		8	4	32	4	
9	3	4.5	3	32 18	3	
4	3 2	8 4.5 2	2	8	2	
1	1	0.5	1	2	ı	
0	0	0	0	0	0	

b) Use the tables of values to graph and label each of the 3 functions on the grid below.

c) How can each of the following graphs be obtained from the graph of $y = \sqrt{x}$?

i) $y = \sqrt{2x}$ Compressed horizontally

i)
$$y = \sqrt{2x}$$

ii)
$$y = \sqrt{(0.5x)}$$

ii) $y = \sqrt{(0.5x)}$ Stretched horizontally

d) In general, how is the graph of $y = \sqrt{(bx)}$ obtained from the graph of $y = \sqrt{x}$

i) when
$$b > 1$$
?

eg. $y = \sqrt{2}x$

ii) when 0 < b < 1?

Summary:

• If b > 1, the graph of y = f(bx) is obtained when the graph of y = f(x) undergoes a

<u>horizontal</u> <u>Compression</u> by a factor of <u>b</u>.

• If 0 < b < 1, the graph of y = f(bx) is obtained when the graph of y = f(x) undergoes <u>horizontal</u> <u>expansion</u> by a factor of <u>b</u>.

Notice from your tables that for $y = \sqrt{2x}$ to have the same y-values as $y = \sqrt{x}$, the corresponding x-values of $y = \sqrt{2x}$ must be divided by the factor 2.

Thus in general, for y = f(bx) to have the same y-values as y = f(x), the corresponding x-values of y = f(bx) must be divided by the factor b.

In other words, if b > 1, it takes "less x" to do the job of building the function y = f(bx), so we have a horizontal compression of y = f(x).

(16,4) (8,4)

Also, if 0 < b < 1, it takes "more x" to do the job of building the function y = f(bx), so we have a horizontal expansion of y = f(x).

What happens if b < 0? (negative) eg $y = \sqrt{-2x}$

In general, if b < 0, the graph of y = f(bx) is obtained when the graph of y = f(x) undergoes a horizontal

expansion compression by a factor of $\frac{1}{b}$, along with a <u>reflection</u> in y-axis

Example 2:

The grid below contains the graph of a function y = f(x). Sketch the graph of $y = f(-\frac{1}{3}x)$.

the graph of $y = f(-\frac{1}{3}x)$.

Multiply every x-coord

by

-3

domain: $0 \le x \le 4$

[0,4]

Example 3:

The graph of $y = \sqrt{9 - x^2}$ is shown to the right.

Sketch the graph of
$$\frac{2y}{2} = \frac{\sqrt{9-x^2}}{2}$$
.

$$\sqrt{\frac{9-x^2}{2}} = \sqrt{\frac{1}{2}\sqrt{9-x^2}}$$
V. Compress by $\frac{1}{2}$

