11.1 Warmup

1. A café has a lunch special consisting of an egg or a ham sandwich (E or H); milk, juice, or coffee (M, J , or C); and yogurt or pie for dessert (Y or P).
a) One item is chosen from each category. List all possible meals or draw a tree diagram to represent all possible meals.

$$
\begin{array}{llllll}
\text { EMY } & \text { EJY } & \text { ELY } & \text { HMY } & \text { HJY } & \text { HCY } \\
\text { EMP } & \text { EJP } & \text { ESP } & \text { HYP } & \text { HJP } & \text { HOP }
\end{array}
$$

b) How many possible meals are there?

$$
2 \times 3 \times 2=12
$$

c) How can you determine the number of possible meals without listing all of them?
multiplying - fundamental counting principle.
2. The cafe also features ice cream in 24 flavours. You can order regular, sugar or waffle cones. Suppose you order a double cone with two scoops of ice cream. How many different double cones are possible?
if C, V is considered same as V,C

$$
\frac{24 \times 24 \times 3}{2} \leftarrow \div 2 \text { because } C V \text { is same as }
$$

3. How many different 2-digit numbers are there?

$$
1, \ldots 9^{\frac{9 \times 10}{2}} \frac{10}{0 \ldots 9}
$$

The Fundamental Counting Principle
If one item can be selected in m ways, and for each way a second item can be selected in n ways, then the two items can be selected in \qquad $m \times n$ ways.

1. Two letters, A and B, can be written in two different orders: AB and BA. These are permutations of A and B . The arrangement of objects in a line is called a permutation, and the order of the objects is important.
a) List all the permutations of 3 letters A, B, and C .

$$
\begin{array}{lll}
A B C & B A C & B C A \\
A C B & C A B & C B A
\end{array}
$$

b) How many permutations are there?
permutations - ordered
arrangements

$$
3 \frac{2}{3 \times 2 \times 1}
$$

c) List all the permutations of the 4 letters $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D

e) Predict the number of permutations of 5 letters A, B, C, D, and E. $120=5 \times 4 \times 3 \times 2 \times 1$
f) How many different ways can 6 people be arranged in a line? $720=6 \times 5 \times 4 \times 3 \times 2 \times 1$ How many different ways can 7 different books be arranged on a shelf? $5040=7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1$ How many permutations of letters are there of the letters of the word PROVE? $120=5 \times 4 \times 3 \times 2 \times 1$

Factorial Notation The symbol ! is used in mathematics to denote the factorial operation.

$$
\begin{aligned}
& 0!=1 \\
& 1!=1 \\
& 2!=2 \\
& 3!=6 \\
& 4!=4 \times 3 \times 2 \times 1=24 \\
& 5!=5 \times 4 \times 3 \times 2 \times 1=120 \\
& n!=n \times(n-1) \times(n-2) \times \ldots \times 3 \times 2 \times 1
\end{aligned}
$$

2. Consider the letters A, B, C, D and E. Instead of using all the letters to form permutations, we could use fewer letters. For example, DB is a 2-letter permutation of these 5 letters.
a) List all the different 2-letter permutations of the 5 letters $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, and E .

$$
\begin{array}{lllll}
A B & A C & A D & A E & D A D B D C D E \\
B A & B C & B D & B E & E A
\end{array}
$$

b) How many different 3-letter permutations are there?
3. In a row with 7 students, how many possible arrangements are there for the first 3 people in the row? Fundamental counting principle: $7 \times 6 \times 5$
Notation:,$P_{3}=\frac{7!}{(7-3)!}=\frac{7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 4}{4 \times 3 \times 2 \times 4}$
chores uses oof choices
Permutations with distinct objects

- An ordered arrangement of objects is called a permutation
- The number of permutations of n distinct objects is n ! - if you use all of them
- The number of permutations of n distinct objects taken r at a time is ${ }_{n} P_{r}=\frac{n!}{(n-r)!}$ - if not all of them ar le used It is important to be aware that both n and r must be whole numbers.

$$
\begin{aligned}
& \mathrm{h} n \text { and } r \text { must te whole numbers. } \\
& r \text { is the \# that }
\end{aligned}
$$

Note that from this definition, the number of permutations of 7 distinct objects taken 7 at a time is ${ }_{7} P_{7}=\frac{7!}{(7-7)!}=\frac{7!}{0!}$. This must be equal to $7!$, so $0!$ must be defined to be equal to \quad _.
6. From a group of 100 people, how many ways can a president, vice-president, and treasurer be selected?

$$
100 \text { or }{ }_{100} \mathrm{P}_{3}
$$

7. Using Factorial Notation

