Example 1. Rational functions with points of discontinuity.
Examine the graphs of the functions below and analyse the behaviour near any non-permissible values. Identify the domain, range, asymptotes and any intercepts.

$$
y=\frac{x^{2}+4 x+3}{x+3}=\frac{(x+3)(x+1)}{x+3}
$$

$$
y=\frac{x+3}{x^{2}+4 x+3}
$$

$$
x+3 \text { 's cancel out } y=x+1
$$

\rightarrow point of discontinuity NPV $x \neq-3$

$$
y=\frac{x+3}{(x+3)(x+1)}=\frac{1}{x+1}
$$

At the non-permissible values, the graph of a rational function will have

- a vertical asymptote when denominator is zero and numerator is not zero denominator does not cancel
- a point of discontinuity (hole) when denominator and numerator are zero simultaneously
- NPV factor cancels out

To analyse the graph near a non-permissible value, use a table of values or the trace feature, or substitute into the simplified from.
x-int at -1 and 2

Diagonal asymptotes exist when the degree of the numerator is 1 more than the degree of the murntit. The slope of this asymptote can be found by dividing the coefficients of the highest degree terms in the numerator and denominator.

To find the zeros of a rational function, find the zeros of the numerator in the simplified form.

$$
\begin{aligned}
& \text { so no NPV }
\end{aligned}
$$

If there are no no-permissible values, the graph of a rational function will have no vertical asymptotes or points of discontinuity.

Horizontal asymptotes exist when the degree of the denominator \geq degree of numerator less than
If the degree of the numerator is the degree of the denominator, then the x-axis will be the horizontal asymptote.

If degree of numerator $=$ degree of denominator then the h. asymptote is another value if degree of num is 1 more than degree of denom = diagonal
P451 \#1-6,8,9,12,14-17,21,23

Test on Monday

