1. The pH of lemon juice is 2.2 , while the pH of coffee is 4.8 . How many times more acidic is lemon juice than coffee?
difference $=2.6$

$$
10^{2.6}=398.1
$$

2. Solve for B in terms of A and C
lemonjuice is $398.1 \times$ more acidic

$$
\text { b) } \underbrace{\log A+\log B} B=\log C
$$

$$
\log (A B)=\log C
$$

$$
A B=C
$$

$$
B=\frac{C}{A}
$$

3. If $a=\log 3$ and $b=1085$, express each or the following in terms of a and b
a) $\log \sqrt{\frac{5}{3}}=\log \left(\frac{5}{3}\right)^{1 / 2}$

$$
=\frac{1}{2} \log \left(\frac{5}{3}\right)
$$

$$
=\frac{1}{2}(\log 5-\log 3)
$$

$$
=\frac{1}{2}(b-a)
$$

$$
\text { b) } \begin{array}{r}
\log \frac{27}{2500}= \\
\log 27-\log 2500 \\
\\
\log 3^{3}-(\log 25+\log 100) \\
\log 3^{3}-\log 5^{2}-\log 10^{2} \\
3 \log 3-2 \log 5-2 \log 10 \\
3 a-2 b-2
\end{array}
$$

4. Which of the following are identities? $(A, B, C>0 \quad B \neq 1)$ Base change formula.
a) $\underbrace{\log _{B} A=-\log _{\frac{1}{B}} A}$
b) $\left(\log _{B} C\right)\left(\log _{C} A\right)=\log _{B} A$

$$
\begin{aligned}
\frac{\log A}{\log B} & =-\frac{\log A}{\log \frac{1}{B}} \\
& =\frac{\log A}{-\log B} \\
& =\frac{\log A}{\log \left(\frac{1}{B}\right)^{-1}}=\frac{\log A}{\log B}
\end{aligned}
$$

$$
\frac{\log C}{\log B} \cdot \frac{\log A}{\log C}=\frac{\log A}{\log B}
$$

$$
\frac{\log A}{\log B}
$$

$$
\begin{aligned}
& \text { a) } \underbrace{\log 2 B-\log 3 C}_{\log \left(\frac{2 B}{3 C}\right)}=A \\
& \frac{3 C}{2} \cdot 10^{A}=\frac{2 B}{3 C} \cdot \frac{3 C}{2} \\
& B=\frac{3 C}{2 C} 10^{A}
\end{aligned}
$$

Exponential Equations
Exponential equations which cannot be converted to the same base can be solved by using logarithms.
Express the value of x in terms of logs and as a decimal to 2 decimal places.

$$
\begin{aligned}
& 1 . \log \left(8^{(x+1)}\right)=\log 20 \\
& \frac{(x+1) \log 8}{\log 8}=\frac{\log 20}{\log 8}
\end{aligned}
$$

2. $20=6(2)^{-0.3 x}$

$$
\begin{array}{r}
\text { or } \begin{array}{r}
(x+1) \log 8=\log 20 \\
x \log 8+\log 8=\log 20 \\
x \log 8= \\
\log 20-\log 8 \\
x
\end{array} \begin{array}{r}
\log 20-\log 8 \\
\log 8
\end{array}
\end{array}
$$

$$
\begin{aligned}
& \log 20=\log \left(6 \cdot 2^{-.3 x}\right) \\
& \log 20=\log 6+\log ^{-.3 x} \\
& \frac{\log 20-\log 6}{(-.3 \log 2)}=\frac{-\beta x \log 2}{-. \beta \log 2}
\end{aligned}
$$

$$
x=-5.79
$$

3. $5^{x+1}=2^{x-3} \quad \log 5^{x+1}=\log 2$

$$
\begin{array}{rl}
(x+1) \log 5 & =(x-3) \log 2 \\
x \log 5+\log 5 & =x \log 2-3 \log 2 \\
\longrightarrow \\
\log 5+3 \log 2 & =x \log 2-x \log 5 \\
& =x(\log 2-\log 5) \\
\frac{\log 5+3 \log 2}{(\log 2-\log 5)} & =x \\
x & x=-4.03
\end{array}
$$

4. $2(7)^{x-2}=3(5)^{3 x} \quad \log \left(2 \cdot 7^{x-2}\right)=\log \left(3 \cdot 5^{3 x}\right)$

$$
\begin{aligned}
& \log 2+4 \log 7^{x-2}=\log 3+\log 3^{3 x} \\
& \begin{aligned}
\log 2+x \log 7-2 \log 7 & =\log 3+3 \times \log 5 \\
\log 2-2 \log 7-\log 3 & =3 \times \log 5-x \log 7 \\
& =x(3 \log 5-\log 7) \\
\frac{\log 2-2 \log 7-\log 3}{3 \log 5-\log 7} & =x \\
x & =-1.49
\end{aligned}
\end{aligned}
$$

5. Solve for $x: p a^{x}=n^{x-1} \quad$ P412 \#2,7

$$
\begin{aligned}
\operatorname{Sog}\left(p \cdot a^{x}\right)=\log \left(n^{x-1}\right) \quad \text { all parts } \\
\begin{aligned}
\log p+\log a^{x} & =\log n n^{x-1} \\
\log p+x \log a & =(x-1)(\log n) \\
& =x \log n-\log n \\
\log p+\log n & =x \log n-x \log a \\
& =x(\log n-\log a) \\
\frac{\log p+\log n}{\log n-\log a} & =x
\end{aligned}
\end{aligned}
$$

6. How long will it take for money invested at 5% compounded monthly to double in value?

$$
\begin{aligned}
& A=P\left(1+\frac{r}{n}\right)^{n t} \\
& 2=1\left(1+\frac{.05}{12}\right)^{12 t} \\
& \log 2=\log \left(1+\frac{.05}{12}\right)^{12 t} \\
& \frac{\log 2=}{\log \left(1+\frac{05}{12}\right)} \frac{12 t}{\log \left(1+\frac{.05}{12}\right)} \\
& 166.7=12 t\left(1+\frac{05}{12}\right)
\end{aligned} \quad \begin{aligned}
& \frac{12 t=\frac{166.7}{12}}{13} \\
& t=13.89 \text { years }
\end{aligned}
$$

7. The half-life of plutonium- 239 is about 25000 years. How many years does it take until only 36% of the plutonium still remains?

$$
\begin{aligned}
y & =y_{0}(a)^{t / n} \\
36 & =100(.5)^{\frac{t}{25000}} \\
\log 36 & =\log \left(100(.5)^{t / 25000}\right) \\
\log 36 & =\log 100+{ }^{t} \log .5 \\
\log 36-\log 100 & =\frac{t}{25000}(\log .5) \quad \rightarrow \frac{t}{25000}=1.474 \\
\frac{\log 36-\log 100}{\log .5} & =\frac{t}{25000} \quad t=36848 \text { years }
\end{aligned}
$$

8. It is estimated that 20% of a certain radioactive substance decays in 30 hours. What is the half-life of the substance?

$$
\begin{aligned}
& y=y_{0}(a)^{\frac{t}{n}} \\
& 80=100(0.5)^{\frac{30}{n}} \\
& .8=0.5^{\frac{30}{n}} \\
& \log .8=\frac{30}{n} \log .5 \\
& \frac{\log .8}{\log .5}=\frac{30}{n}
\end{aligned}
$$

cross multiply + divide.
$n=93.2$ hours.
p412 \#11-15, 18

