8.4A Equations Involving Logarithms

To solve an equation involving logarithms, either
Express the equation as a single \log equaling a single $\log : \log _{B} X=\log _{B} Z \quad \Rightarrow \quad X=Z$
Or
Convert the equation to a single log equaling a number: $\log _{B} X=N \quad \Rightarrow \quad B^{N}=X$

It is also important to be aware of the restrictions on the variable in the equation. Apparent solutions may sometimes be extraneous because they fail to meet the restrictions. Alternately, you can check each solution in the equation to make sure that it is valid.

Example 1: Solve for x :

$$
\begin{aligned}
& \text { c) } \log _{2}(x-2)+\log _{2} x=\log _{2} 3 \\
& \log _{2}[(x-2)(x)]=\log _{2} 3 \\
& \log _{2}\left(x^{2}-2 x\right)=\log _{2} 3 \\
& x^{2}-2 x=3 \\
& x^{2}-2 x-3=0 \\
& (x-3)(x+1)=0 \\
& \text { d) } \log _{4}(2 x+2)-\log _{4}(3 x+1)=\frac{1}{2} \\
& \log _{4}\left(\frac{2 x+2}{3 x+1}\right)=\frac{1}{2} \\
& 4^{\frac{1}{2}}=\frac{2 x+2}{3 x+1} \\
& \frac{2}{1}=\frac{-3 x+1}{=} \frac{2 x+2}{3 x+1} \cdot 3 x+1 \quad \text { cross } \text { multiply. } \\
& 6 x+2=2 x+2 \quad 4 x=0 \quad x=0 \quad \checkmark \\
& \text { e) } \log _{5}(3 x+1)=3-\log _{5}(x-3) \\
& \begin{array}{r}
6 x+2=2 x+2 \\
+\log _{5}(3 x+1)=3-\log _{5}(x-3) \\
+\log _{5}(x-3)^{+\log _{5}(x-3)}
\end{array} \\
& \log _{5}[(3 x+1)(x-3)]=3 \\
& 5^{3}=(3 x+1)(x-3) \\
& 125=3 x^{2}-9 x+x-3 \\
& 0=3 x^{2}-8 x-128 \\
& x=\frac{-(-8) \pm \sqrt{(-8)^{2}-4(3)(-128)}}{2(3)} \\
& x=8 \text { or }-8 \frac{1}{3} \\
& \text { reject } x=-1 \\
& \text { a) } \log _{2}(-1) \leftarrow \text { not possible } \\
& \text { or } \\
& \text { restriction on } x \text { is } \\
& x-2>0 \text { and } x>0
\end{aligned}
$$

$$
\begin{aligned}
& \text { f) } \log _{2}(x-3)-2=\log _{2}\left(\frac{1}{x}\right) \\
& \log _{2}(x-3)-\log _{2}\left(\frac{1}{x}\right)=2 \\
& \log _{2}\left(\frac{x-3}{\left(\frac{1}{x}\right)}\right)=2 \\
& \begin{array}{l}
\frac{(x-3)}{\left(\frac{1}{x}\right)}=2^{2} \\
(x)(x-3)=2^{2}
\end{array} \int \begin{array}{l}
x^{2}-3 x=4 \\
x^{2}-3 x-4=0 \\
(x-4)(x+1)=0
\end{array} \\
&
\end{aligned}
$$

(1) $\log _{5}$ and 5° cancel out.
(2) convert the exp. form

$$
\begin{aligned}
5^{\log _{8}(2 x-8)} & =12 \\
2 x-8 & =12 \\
2 x & =20 \\
x & =10
\end{aligned}
$$

$$
\begin{aligned}
\log _{5} 12 & =\log _{5}(2 x-8) \\
12 & =2 x-8
\end{aligned}
$$

Example 2: Determine the inverse of $y=5 \log _{4}(2 x-7)+3 \quad$ switch x and y

