8.3 The Laws of Logarithms

Investigating Laws of Logarithms

Use your calculator to calculate the values in each of the tables below. Then compare the answers in the two columns and suggest a possible law

$(\log 100)(\log 10)$) 2	log1000	3	
$\log 12 + \log 2$	1.38	log 30	1.48	
$\log 6 + \log 5$	1.48	log 56	1.75	
$\log 8 + \log 7$	1.75	log 24	1.38	
Possible Law:	$\log M + \log N = \log (\mathbf{M} \cdot \mathbf{N})$			

$\frac{\log 1000}{\log 200}$ 1.30	$\log\left(\frac{1000}{200}\right) \qquad \textbf{0.69}$
log1000-log200 0.69	log 6 0.77
log 40 - log 200 - 0.69	log 0.2 - 0.69
log 30 – log 5 O.77	log 5 0.69
Possible Law: $\log M - \log N = \log \left(\frac{M}{N}\right)$	

$(\log 5)^2$	0.49		$\log 5^2$	1.4
3 log 5	2.1		2log7	1.7
log 49	1.7	49=72	log10000	4
4log10	4		log125	2.1
Possible Law:	$\log M^p =$	PlogM		

Examples

1) Rewrite each of the following in terms of the single logarithms of x, y and z

a)
$$\log_3 \frac{xy}{z^2} = \log_3 x + \log_3 y - \log_3 z^4$$

 $= \log_3 x + \log_3 y - 2 \log_3 z$
b) $\log_5 \sqrt{xy^4}$
 $= \log_5 (xy^4)^2$ = $\log_5 (x^4 \cdot y^2) = \log_5 x^2 + \log_5 y^2$
c) $\log_6 \frac{36}{y^3 z^2}$ = $\log_6 36 - \log_6 y^3 - \log_6 z^4$
 $= 2 - 3\log_6 y - 2\log_6 z^4$

2) Evaluate the following without calculators:

a)
$$\log_{3} 9\sqrt{27} = \log_{3} 9 + \log_{3} \frac{27}{27} + \log_{3} 3^{\frac{3}{2}}$$

 $= \log_{3} 3^{\frac{3}{2}} + \log_{3} 3^{\frac{3}{2}} + \frac{109}{33} = 3.5$
b) $\log_{4} 48 + \log_{4} \frac{2}{3} + \log_{4} 8$
 $= 3.5$
 $\log_{4} (48 \times \frac{2}{3} \times 8) = \log_{4} (256) = \log_{4} 4^{4}$
c) $2\log_{5} 10 - (\log_{5} 50 + 3\log_{5} \sqrt[3]{10}) = 4^{\frac{1}{4}}$
 $\log_{5} 10^{\frac{3}{2}} - \log_{5} 50 - \log_{5} \sqrt[3]{10}^{\frac{3}{2}} = \log_{5} (\frac{10}{50})$
3) Express the following as a single logarithm:
a) $\log x + 3\log y - \frac{1}{2}\log w = \log_{5} x + \log_{7} y^{\frac{3}{2}} - \log_{10} x^{\frac{5}{2}} = \log_{5} (\frac{1}{5})$
b) $2\log_{3} x + 5\log_{3} x - \frac{3\log_{3} x}{2} + \log_{7} \sqrt{\frac{3}{10}} + \log_{3} \sqrt{\frac{2}{10}} + \log_{3} \sqrt{\frac{5}{2}} - \log_{3} \sqrt{\frac{3}{2}} + \log_{3} \sqrt{\frac{2}{109}} + \log_{4} \sqrt{\frac{2}{109}} + \log_{5} \sqrt{\frac{109}{109}} + \log_{5} \sqrt{\frac{109}{109}} + \log_{10} \sqrt{\frac{2}{109}} + \log_{10} \sqrt{\frac{2}{109}}$

a) Express 12 as a power of 3.
They are all asking "
$$3$$
 to what power makes D "

a)
$$\log_5 47 = x$$

 $5^{\times} = 47$
 $\log 5^{\times} = \log 47$
 $\chi \log 5 = \log 47$
 $\chi = \frac{\log 47}{\log 5} = \frac{\log 47}{\log 5} = \frac{\log 47}{\log 5}$

* Change of Base Formula $\log_B A = \frac{\log A}{\log B} = \frac{\log_P A}{\log_P B} = \frac{\ln A}{\ln B}$ 6) The intensity level, β in decibels (dB), of a sound is defined to be $\beta = 10\log \frac{I}{I_0}$ where I is the

intensity of the sound. The sound level of a chainsaw is about 85 dB, while that of a hairdryer is about 70 dB. How many times intense is the sound of a chainsaw compared to the sound of a hairdryer?

 \triangle dB = 85-70 whisper 20dB | 10x louder library 30dB | 10x louder conversation 40dB | 10x louder = 15 dB $15 = 10 \log I$ 10 = 10a chainsaw is 31.6 x louder than a hairdryer $1.5 = \log I$ 1.5 = I7) The pH scale measures the acidity or alkalinity of a solution, and is defined as $pH = -\log[H^+]$ where = 31.6 H^+ is the hydrogen ion concentration. A neutral solution has a pH of 7. A Cola drink has a pH of 2.5, while milk has a pH of 6.6. How many times as acidic as milk is a cola drink. _alkaline. acid 0 6.67 14 2.5 neutral pH difference is 4.1 4.1 cola is 12589x more acid than milk. 10 = 12589 * milk is 12589 × more alkaline than coke