8.3 The Laws of Logarithms

Investigating Laws of Logarithms
Use your calculator to calculate the values in each of the tables below. Then compare the answers in the two columns and suggest a possible law

$(\log 100)(\log 10)$	2	$\log 1000$	3
$\log 12+\log 2$	1.38	$\log 30$	1.48
$\log 6+\log 5$	1.48	$\log 56$	1.75
$\log 8+\log 7$	1.75	$\log 24$	1.38
Possible Law: $\log M+\log N=\log (M \cdot N)$			

$\frac{\log 1000}{\log 200}$	1.30	$\log \left(\frac{1000}{200}\right)$	0.69
$\log 1000-\log 200$	0.69	$\log 6$	0.77
$\log 40-\log 200$	-0.69	$\log 0.2$	-0.69
$\log 30-\log 5$	0.77	$\log 5$	0.69
Possible Law: $\quad \log M-\log N=\quad \log \left(\frac{M}{N}\right)$			

$(\log 5)^{2}$	0.49	$\log 5^{2}$	1.4
$3 \log 5$	2.1		$2 \log 7$
$\log 49$	1.7	$49=7^{2}$	$\log 10000$
$4 \log 10$	4		4
Possible Law:	$\log M^{p}=$	$P \log 125$	2.1

rational exponents are roots.
Examples

1) Rewrite each of the following in terms of the single logarithms of x, y and z
a)

$$
\begin{aligned}
\log _{3} \frac{x y}{z^{2}} & =\log _{3} x+\log _{3} y-\log _{3} z^{2} \\
& =\log _{3} x+\log _{3} y-2 \log _{3} z
\end{aligned}
$$

b) $\log _{5} \sqrt{x y^{4}}$

$$
\begin{aligned}
& \log _{5} \sqrt{x y^{4}} \\
=\log _{5}\left(x y^{4}\right)^{\frac{1}{2}}=\log _{5}\left(x^{\left.\frac{1}{2} \cdot y^{2}\right)}\right. & =\log _{5} x^{\frac{1}{2}}+\log _{5} y^{2} \\
& =\frac{1}{2} \log _{5} x+2 \log _{5} y
\end{aligned}
$$

c) $\log _{6} \frac{36}{y^{3} z^{2}}=$

$$
\begin{aligned}
& =\log _{6} 36-\log _{6} y^{3}-\log _{6} z^{2} \\
& =2-3 \log _{6} y-2 \log _{6} z
\end{aligned}
$$

2) Evaluate the following without calculators:
a)

$$
\begin{aligned}
& \log _{3} 9 \sqrt{27}=\log _{3} 9+\log _{3} \sqrt{27} \\
&=\log _{3} 3^{2}+\log _{3} 3^{\frac{3}{2}} \\
&=2 \sqrt{3^{3}} \\
& \log _{4} 48+\log _{4} \frac{2}{3}+\log _{4} 8+\frac{3}{2}=3.5 \\
& \log _{4}\left(48 \times \frac{2}{3} \times 8\right)=\log _{4}(256)=\log _{4} 4^{4} \\
& 2 \log _{3} 10-\left(\log _{5} 50+3 \log _{5} \sqrt[3]{10}\right.=4
\end{aligned}
$$

b)
c) $2 \log _{5} 10-\left(\log _{5} 50+3 \log _{5} \sqrt[3]{10}\right)$

$$
\begin{aligned}
& \log _{5} 10^{2}-\log _{5} 50-\log _{5} \sqrt[3]{10^{3}}=\log _{5}\left(\frac{10^{2}}{50 \cdot 10}\right) \\
&=\log _{5}\left(\frac{100}{500}\right)=\log _{5}\left(\frac{1}{5}\right) \\
& \text { 3) Express the following as a single logarithm: }
\end{aligned}
$$

a)

$$
\begin{aligned}
& \begin{array}{l}
\log x+3 \log y-\frac{1}{2} \log w=\log x+\log y^{3}-\log w^{\frac{1}{2}}
\end{array} \\
& =\log \left(\frac{x y^{3}}{\omega^{1 / 2}}\right)
\end{aligned}
$$

b) $2 \log _{3} x+5 \log _{3} x-\frac{3 \log _{3} x}{2}$

$$
\begin{aligned}
& \text { b) } 2 \log _{3} x+5 \log _{3} x-\frac{3 \log _{3} x}{2} \\
& 2 \log _{3} x+5 \log _{3} x-\frac{3}{2} \log _{3} x \int \log _{3} x^{2}+\log _{3} x^{5}-\log _{3} x^{\frac{3}{2}} \\
& \log _{3}\left(\frac{x^{2} \cdot x^{5}}{x^{1.5}}\right)=\log _{3} x^{5.5} \\
& \text { c) } \log _{7}(2 x+2)-\log _{7}\left(x^{2}+3 x+2\right) \\
& \log _{7}\left(\frac{2 x+2}{x^{2}+3 x+2}\right)=\log _{7}\left(\frac{2(x+1)}{\left(\frac{x+1)}{}(x+2)\right)}\right)=\log _{7}\left(\frac{2}{x+2}\right)
\end{aligned}
$$

a) Express 12 as a power of 3 .
b) $3^{x}=12$
c) $\log _{3} 12=x$

They are all asking " 3 to what power makes $12^{\prime \prime}$
5) Determine:

$$
\begin{aligned}
\text { a) } \begin{array}{rlrl}
\log 47 & =x & \text { b) } 9^{x} & =2 \\
5^{x} & =47 & \log _{9} 2=x \\
\log 5^{x} & =\log 47 & & \frac{\log 2}{\log 9}=x \\
x \log 5 & =\log 47 & \\
x & =\frac{\log 47}{\log 5}=\log _{5} 47
\end{array}
\end{aligned}
$$

6) The intensity level, β in decibels (dB), of a sound is defined to be $\beta=10 \log \frac{I}{I_{0}}$ where I is the intensity of the sound. The sound level of a chainsaw is about 85 dB , while that of a hairdryer is about 70 dB . How many times intense is the sound of a chainsaw compared to the sound of a hairdryer?
$\left.\begin{array}{ll}\text { whisper } & 20 d B \\ \text { library } & 30 d B\end{array}\right] 10 \times$ louder conversation 40 dB$] 10 \times$ louder.
a chainsaw is $31.6 \times$ louder than a hairdryer

$$
\begin{aligned}
\Delta d B & =85-70 \\
& =15 \mathrm{~dB}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{15}{10}=\frac{10 \log I}{10} \\
& 1.5=\log I \quad 10^{1.5}=I
\end{aligned}
$$

7) The pH scale measures the acidity or alkalinity of a solution, and is defined as $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$where $=31.6$ $\left[\mathrm{H}^{+}\right]$is the hydrogen ion concentration. A neutral solution has a pH of 7. A Cola drink has a pH of 2.5 , while milk has a pH of 6.6 . How many times as acidic as milk is a cola drink.

pH difference is 4.1

$$
10^{4.1}=12589
$$

* colo is $1258 q_{x}$ more acid than milk.
* milk is $12589 \times$ more alkaline than coke.

