The Natural Logarithm

The inverse of $y = e^x$ would be the logarithmic function $y = \log_e x$. Because of the significance of e in representing the idea of instantaneous growth, $\log_e x$ became known as the *natural logarithm* of x and was defined as $\ln x$. This is read as the natural $\log of x$, $\log base e of x$, or more simply "lawn" x. Alternately, $\log_e x = \ln x$

Thus $\ln 1 = 0$ because $e^{\circ} = 1$ and $\ln e^{4} = 4$ because $e^{\circ} = e^{\circ}$. $e^{\times} = e^{\circ}$. $e^{\times} = e^{\circ}$. $e^{\times} = e^{\circ}$. $e^{\ln 0} = 1$ because $e^{\circ} = 1$ be

For those of you who felt a math joke coming, here it is (**WARNING** This joke may be offensive to some)

Question: What is the number one name in the world?

Answer: Lonnie $(\ln e)$ $\ln e^{\iota} = 1$

The graph of $y = \ln x$ should behave in a similar way to the graph of $y = \log x$

x-int at (1,0)
asymptote at x=0
no y-intercept.

Something to ponder: The equation $e^{i\pi} + 1 = 0$ is considered by many mathematicians to be among the most "beautiful" in all of mathematics. It nicely relates probably the 5 most important numbers in all of mathematics: 1, 0, e, π , and $i(\sqrt{-1})$