The Natural Logarithm

The inverse of $y=e^{x}$ would be the logarithmic function $y=\log _{e} x$. Because of the significance of e in representing the idea of instantaneous growth, $\log _{e} x$ became known as the natural logarithm of x and was defined as $\ln x$. This is read as the natural \log of x, \log base e of x, or more simply "lawn" x.
Alternately, $\log _{e} x=\ln x$

$\ln 0$ is undefined because e^{D} must be greater than 0
$\ln 2=$ \qquad because $e^{.693}=2$
$e^{\ln 2}=$ \qquad $e^{\ln 10}=$ \qquad $e^{\ln e}=$ \qquad $e^{\ln x}=\quad \mathbf{x}$ \qquad

For those of you who felt a math joke coming, here it is (WARNING This joke may be offensive to some)

Question: What is the number one name in the world?
Answer: Lonnie $(\ln e)$
$\ln e^{\prime}=1$

The graph of $y=\ln x$ should behave in a similar way to the graph of $y=\log x$

$$
\begin{aligned}
& x \text {-int at }(1,0) \\
& \text { asymptote at } x=0 \\
& \text { no y-intercept. }
\end{aligned}
$$

Something to ponder: The equation $e^{i \pi}+1=0$ is considered by many mathematicians to be among the most "beautiful" in all of mathematics. It nicely relates probably the 5 most important numbers in all of mathematics: $1,0, e, \pi$, and $i(\sqrt{-1})$

