8.1 Understanding Logarithms

Using the log key on your calculator, determine the following:

What conclusions can you make about the log operation? What patterns do you observe?
you carr't do log of a negative or O

- as A increases, then $\log A$ increases if A is $10 \times$ bigger, then $\log A$ is 1 unit bigger,
In general, we can say that $\log A=B$ means $\quad 10^{B}=A$
Thus $\log 1000=3$ because $10^{3}=1000$
$\log 0.0000000001=-10$ because $10^{-10}=0.000000000$) $\log 2=0.3$ because $10^{.3} \doteq 2$

The logarithms above are sometimes called common logarithms because they have a base of 10. In practice, if the base is 10 , we do not write it down. Thus $\log A$ really means $\log _{10} A$. The base of the logarithm is not limited to 10 , and can be defined with any positive base.
What is $\log _{2} 32$? This is read log, base 2 , of 32 and means to find what power of 2 gives 32 . Or in other words, the equations

$$
\log _{2} 32=5
$$

$$
\log _{2} 32=A \quad \text { and } \quad 2^{A}=32 \quad \text { are asking the same thing. }
$$

Logarithmic form

Exponential form

So, $3=\log _{2} 8$ means the same as $\log _{2} 8=3$.
Thus $\log _{2} 8$ is the exponent necessary in order to write 8 as a power of 2 . Similarly, $\log _{3} 81$ is the exponent necessary in order to write 81 as a power of 3 .

More generally, $\log _{2} x$ is the exponent necessary in order to write \qquad as a power of 2 .

In general, $y=\log _{a} x$ is the exponent necessary in order to write \qquad X as a power of a Alternately, y is the exponent you need on a base of a to give an answer of x

Always remember: a logarithm is an \qquad exponent .

Equations written in exponential form can also be written in logarithmic form and vice versa.

Exponential Form	Logarithmic Form	
B car rt be J $A=B^{x}$	\Leftrightarrow	$\log _{B} A=x$

It is extremely important to be aware of the restrictions on the above statement. $\log _{3} 9=2$

Convert to exponential form:		Convert to logarithmic form:
$\log _{a} x=b$	$\Leftrightarrow a^{b}=x$	$a^{c}=b \quad \log _{a} b=C$
$\log _{3} x=9$	$\Leftrightarrow 3^{9}=x$	$5^{3 m}=8 \quad \log _{5} 8=3 m$

Examples
(1) Express $5^{4}=625$ in logarithmic form

$$
\log _{5} 625=4
$$

(3) Express $4^{-3}=\frac{1}{64}$ in logarithmic form.

$$
\log _{4} \frac{1}{64}=-3
$$

5) Evaluate $\log _{6} \sqrt{6}=x$

$$
6^{x}=\sqrt{6}
$$

(2) Express $\log _{3} 81=4$ in exponential form.

$$
3^{4}=81
$$

4) Evaluate $\log _{3} 3^{5}=x$

$$
3^{x}=3^{5}
$$

6) Rewrite $y=2^{x}$ as a logarithmic statement.

$$
\log _{2} y=x
$$

7) Evaluate : $\log _{B} B=1 \quad \log _{B} B^{5}=5$

$$
\log _{B} B^{13}=13
$$

$\log _{B} B^{x}=$

$$
3^{-1}=\text { fraction } \frac{1}{3}
$$

Example 2. The formula for the Richter magnitude, M , of an earthquake is $M=\log \frac{A}{A_{0}}$, where A is the amplitude of the ground motion and A_{0} is the amplitude of a standard earthquake. (A "standard" earthquake has amplitude of 1 micron and a magnitude of 0). The largest measured earthquake struck Chile in 1960, and measured 9.5 on the Richter scale. How many times as great was the seismic shaking on the Chilean earthquake than the 1949 Haida Gwaii earthquake, which had a magnitude of 8.1 on the Richter scale?

$$
\text { Chile earthquake }=9.5
$$

$$
H . G
$$

$150000 \times$ more powerful

$$
\log (150000)=5.2
$$

1.4 units on Richter Scale our recent $E Q=4.3$

$$
10^{1.4}=25.12 \times \text { as great }
$$

The relationship between exponential and logarithmic functions can be seen by looking at $y=2^{x}$ and $x=2^{y}$ (This is the inverse of $y=2^{x}$, and can also be written in logarithmic form as $y=\log _{2} x$)

In general, we can then say that the inverse of the exponential function $y=a^{x}(a>0, a \neq 1)$ is $x=a^{y}$ or, in logarithmic form, $y=\log _{a} x$. Thus the inverse of $y=3^{x}$ is $y=\log _{z} x$ and the inverse of $y=\log _{10} x$ is $y=10^{x}$. Give the properties of the graphs of logarithmic functions graphed below.

